A SYSTEMATIC STUDY
OF AUTOMATED
PROGRAM REPAIR:
FIXING 55 OUT OF 105
BUGS FOR $8 EACH

Claire Michael Stephanie
Le Goues Dewey-Vogt Forrest

Westley
Weimer

“Everyday, almost 300

bugs appear [...] far too Annual cost of
many for only the Mozilla goftware errors in the
programmers to handle.” US: $59.5 billion

\“‘1 —_ M ll D l
ECR Ooozé a Developer, (0.6% of GDP).
[UUO Uﬂﬂ_l

PROBLEM: BUGGY SOFTWARE

10%: Everything Else

Average time to fix a

security-critical error:
28 days.

90%: Maintenance

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 2

HOW BAD IS IT?

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 3

mozilla

About Us Community Map Our Projects Gel

Bug Bounty Program

Introduction

The Mozilla Security Bug Bounty Program is designed to encourage security research in Mozilla softv
and to reward those who help us create the safest Internet clients in existence.

Many thanks to Linspire and Mark Shuttleworth, who provided start-up funding for this endeavor.

General Bounty Guidelines

Tarsnap

Online backups for the truly paranoid

Tarsnap
News
About
Legal
Infrastructure
Bug Bounty
Winners

Design

Tarsnap Bug Bounties

According to Linus' Law, "given enough eyeballs, all bugs ar
This is one of the reasons why the Tarsnap client source code
available; but merely making the source code available doesn't
anything if people don't bother to read it.

For this reason, Tarsnap has a series of bug bounties. Sin
bounties offered by Mozilla and Google, the Tarsnap bug bount
an opportunity for people who find bugs to win cash. Unlike thos
the Tarsnap bua bounties aren't limited to securitv buas. Depen

Claire Le Goues, ICSE 2012

News and developments from the open source b

Encouraging More Chromium Security Research
Thursday, January 28, 2010
Labels: googlechrome, security

In designing Chromium, we've been working hard to make the browser as secure as possible.
We've made strong improvements with the integrated sandboxing and our up-to-date user base.
We're always looking to stay on top of the |atest browser security features. We've also worked
closely with the broader security community to get independent scrutiny and to quickly fix bugs that
have been reported.

Some of the most interesting security bugs we've fixed have been reported by researchers external
to the Chromium project. For example, this same origin policy bypass from Isaac Dawson or this v8

engine bug found by the Mozilla Security Team. Thanks to the collaborative efforts of these people
and others, Chromium security is stronger and our users are safer.

Today, we are introducing an experimental new incentive for external researchers to participate. We
will be rewarding select interesting and original vulnerabilities reported to us by the security
research community. For existing contributors to Chromium security — who would likely continue to
contribute regardless — this may be seen as a token of our appreciation. In addition, we are
hoping that the introduction of this program will encourage new individuals to participate in
Chromium security. The more people involved in scrutinizing Chromium’s code and behavior, the
more secure our millions of users will be.

Such a concept is not new; we'd like to give serious kudos to the folks at Mozilla for their
long-running and successful vulnerability reward program.

Any valid security bug filed through the Chromium bug tracker (under the template "Security Bug”)
will qualify for consideration. As this is an experimental program, here are some guidelines in the
form of questions and answers:

Q) What reward might | get?

A) As per Mozilla, our base reward for eligible bugs is $500. If the panel finds a particular bug
particularly severe or particularly clever, we envisage rewards of $1337. The panel may also decide
a single report actually constitutes multiple bugs. As a consumer of the Chromium open source
project, Google will be sponsoring the rewards.

Q) What bugs are eligible?

A) Any security bug may be considered. We will typically focus on High and Critical impact bugs, but
any clever vulnerability at any severity might get a reward. Obviously, your bug won't be eligible if you
worked on the code or review in the area in question.

Q) How do | find out my bug was eligible?
A) You will see a provisional comment to that effect in the bug entry once we have triaged the bug.

Q) What if someone else also found the same bug?

A) Only the first report of a given issue that we were previously unaware of is eligible. In the event of
a duplicate submission, the earliest filed bug report in the bug tracker is considered the first report.

http://genprog.cs.virginia.edu

Seal

Arch
Apri

Sub:
S

e

AVAUL1114 1TOTLVED T l.l.sl.l.l. (AP SLVLE 51\‘!‘.7 a Wulll.y Pd._y ALITIIL 11 VWZWE UTLITYT LUIT aLuuvld vl T l.CPUI. LT1L 11ave

endangered the security of Mozilla's end users.

If two or more people report the bug together the reward will be divided among

Client Reward Guidelines

The bounty for valid critical client security bugs will be $3000 (US) cash reward
The bounty will be awarded for sg:critical and sg:high severity security bugs thai
criteria:

« Security bug is present in the most recent supported, beta or release cand
Thunderbird, Firefox Mobile, or in Mozilla services which could compron
products, as released by Mozilla Corporation or Mozilla Messaging.

+ Security bugs in or caused by additional 3rd-party software (e.g. plugins, «
from the Bug Bounty program.

More information about this program can be found in the Client Security Bug B¢

Web Application and Services Reward Guideli

Baaounty for valid web applications or services related securjs®mgs, we are gi
@ S) for high severity and, in some cases, may pay up t JS) for e
m€rabilities. We will also include a Mozilla T-shirt. The boul 1 be awarde

ws:high security bugs that meet the following criteria:

+ Security bug is present in the web properties outlined in the Web Applicaf
* Security bug is on the list of sites which part of the bounty. See the eligibl
Application Security Bounty FAQ for the list of sites which is included un¢

More information about this program can be found in the Web Application Security Bounty FAQ.

arn UPPUIWULILY 101 pEUPIE WIHU HTTIU DUysS W will Laslil. UTHIRE U1use DUUIIUE

the Tarsnap bug bounties aren't limited to security bugs. Depending on t
type of bug and when it is reported, different bounties will be awarded:

Bounty |Pre-release
value |bounty value Type of bug
A bug which allows someone intercepting Tarsng
$1000 [$2000 traffic to decrypt Tarsnap users' data.
$500 |$1000 A bug which a!lows the Tarsnap service to decry
Tarsnap users' data.
$500 |$1000 A bug which causes data corruption or loss.
A bug which causes Tarsnap to crash (without
$100 [$200 corrupting data or losing any data other than an
archive currently being written).
$50 $100 Any other non-harmless bugs in Tarsnap.
$20 $40 Build breakage on a platform where a previous
Tarsnap release worked.
"Harmless" bugs, e.g., cosmetic errors in Tarsna
$10 $20 . :
oufnut or mistakes in source code comments.
w ors in the Tarsnap source code or
Ve .9, typos in website text or source cog
$1 ‘@ comments. Style errors in Tarsnap code qualify
here, but usually not style errors in upstream coc
(e.g., libarchive).

The pre-release bounty value will be awarded for bugs reported in t
interval between when a new Tarsnap release is sent to the tarsne

Claire Le Goues, ICSE 2012

http://genprog.cs.virginia.edu)

--.REALLY?

e Iny g e nng s e n e mn 3 e ey .

Privacy Security Hardware and Software n
farsna P.
Home = Security

125 spelling/style
Google calls, raises Mozilla's bug b f
C}(;I(‘)gniecgai,lsralses O0Z1lia s bug ounty or 63 harmleSS

Boosts cash-for-bugs maximum payment to $3,133, makes researchers 1 1 m i n Or
mostly happy

By Gregg Keizer + 1 major

July 22, 2010 11:58 AM ET CJ 2 Comments @ + Briefcase | What's this?

Computerworld - Google on Tuesday hiked bounty payments for Chrome bugs

to a maximum of $3,133, up almost $2,000 from the previous top dollar payout 7 5/2 0 0 — 3 8 0/ T P t

of $1,337. - o rate
The move came less than a week after rival browser maker Mozilla increased

Firefox bug bounties to $3,000. $ 1 7 + 40 h O u rS pe r T P

In an entry to the Chromium project's blog, Chris Evans, who works on the
Chrome security team, announced the new maximum bounty of $3.133.70 and
said Google would "most likely" award that amount for all vulnerabilities rated

“critical” in the company's four-step scoring system. which were wrong vet didn't actually affect the compiled code.

"The increased reward reflects the fact that the sandbox makes it harder to

find bugs of thls severity," said Evans, referring to the technology baked |nto' that T'm not the only person who has looked at the Tarsnap code, and if there
Chrome that isolates processes from one another and the rest of the machine,

preventing or at least hindering malicious code from escaping an application to are more c1"1t1cal bugs like the security bug I fixed in January, they've escaped
wreak havoc or infect the computer. more than just my eyeballs. Worth the money? Every penny.

But most importantly, $1265 of bugs gives me the peace of mind of knowing

N . ¢ LAAMe AR AFAAAA T R R

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 6

--.REALLY?

e Iny g e nng s e n e mn 3 e ey .

Privacy Security Hardware and Software n
farsna P.
Home = Security

125 spelling/style
Google calls, raises Mozilla's bug b f
C}?I(‘)gniectalai,lsralses O0Z1lia s bug ounty or 63 harmleSS

Boosts cash-for-bugs maximum payment to $3,133, makes researchers 1 1 m i n Or
mostly happy

By Gregg Keizer v + 1 major

July 22, 2010 11:58 AM ET CJ 2 Comments @ + Briefcase | What's this?

Computerworld - Google on Tuesday hiked bounty payments for Chrome bugs

to a maximum of $3,133, up almost $2,000 from the previous top dollar payout 7 5/2 0 0 — 3 8 0/ T P t

of $1,337. - o rate
The move came less than a week after rival browser maker Mozilla increased

Firefox bug bounties to $3,000. $ 1 7 + 40 h O u rS pe r T P

In an entry to the Chromium project's blog, Chris Evans, who works on the
Chrome security team, announced the new maximum bounty of $3.133.70 and
said Google would "most likely" award that amount for all vulnerabilities rated

“critical” in the company's four-step scoring system. which were wrong vet didn't actually affect the compiled code.

"The increased reward reflects the fact that the sandbox makes it harder to
find bugs of this severity," said Evans, referring to the technology baked into
Chrome that isolates processes from one another and the rest of the machine,
preventing or at least hindering malicious code from escaping an application to
wreak havoc or infect the computer.

But most importantly, $1265 of bugs gives me the peace of mind of knowing
that I'm not the only person who has looked at the Tarsnap code, and if there

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 4

--.REALLY?

FIITPTETY y e ey e ey T T T -

Privacy Secunh Hardware and Soﬂ'ware

Home > Security

News . - - - - -

gﬁc ~ which were wrong vet didn't actually affect the compiled code.
r
most But most importantly, $1265 of bugs gives me the peace of mind of knowing

By Greg :

= that I'm not the only person who has looked at the Tarsnap code, and if there
- are more critical bugs like the se . they've escaped

Comp!

eam more than just my eyebdl
o) ol
Themé € JAAMY AR ASAAAA T

Firefox bug bountles to $3,000.

In an entry to the Chromium project's blog, Chris Evans, who works on the
Chrome security team, announced the new maximum bounty of $3.133.70 and
said Google would "most likely" award that amount for all vulnerabilities rated _ i
“critical” in the company's four-step scoring system. which were wrong yet

Ng't z;ct-ually affect the compiled code.

"The increased reward reflects the fact that the sandbox makes it harder to But most importantly $1265 of dues gives me the peace of mind of knowing

find bugs of this severity," said Evans, referring to the technology baked into that I'm not the only person who haNqoked at the Tarsnap code, and if there
Chrome that isolates processes from one another and the rest of the machine, yP P
are more critical bugs like tha-sew : mmagy they've escaped

preventing or at least hindering malicious code from escaping an application to
wreak havoc or infect the computer. more than just my eyebd{]

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 8

SOLUTION:
PAY STRANGERS

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 9

SOLUTION:
PAY STRANGERS

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 10

SOLUTION:
AUTOMATE

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 11

AUTOMATED PROGRAM REPAIR

GENPROG:
AUTOMATIC],
SCALABLE,
COMPETITIVE
BUG REPAIR.

1 C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A generic method for automated

software repair,” vol. 38, no. 1, pp. 54— 72, 2012.
W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding patches using genetic
programming,” in 2009, pp. 364—367.

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 12

AUTOMATED PROGRAM REPAIR

GENPROG:
AUTOMATIC],
SCALABLE,
COMPETITIVE
BUG REPAIR.

1C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A generic method for automated
software repair,” Transactions on Software Engineering, vol. 38, no. 1, pp. 54— 72, 2012.
W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding patches using genetic
programming,” in Intemational Conference on Software Engineering, 2009, pp. 364—367.

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 13

AUTOMATED PROGRAM REPAIR

GENPROG:
AUTOMATIC,
SCALABLE,
COMPETITIVE
BUG REPAIR.

AUTOMATED PROGRAM REPAIR

GENPROG:
AUTOMATIC,
SCALABLE,
COMPETITIVE
BUG REPAIR.

AUTOMATED PROGRAM REPAIR

GENPROG:
AUTOMATIC,
SCALABLE,
COMPETITIVE
BUG REPAIR.

INPUT EVALUATE FITNESS

N

e Ver
...‘ sre

VIV VX

DISCARD

ACCEPT

ViV

OUTPUT

Claire Le Goues, ICSE 2012

INPUT EVALUATE FITNESS

C

VIV VX

DISCARD %88

ACCEPT

-

C

Claire Le Goues, ICSE 2012 | MUT;A:TE OUTPUT

BIRD’S EYE VIEW

Search: random (GP) search through
nearby patches.

Approach: compose small random edits.

*\Where to change?
*How to change it?

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 19

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 20

Input: VvV O

é % Legend:
O High change
probability.
) Low change
probability.
@ Not changed.

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 21

o

An edit is:

* Replace statement
X with statement Y

* Insert statement X
after statement Y

* Delete statement X

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 22

o

An edit is:

* Replace statement
X with statement Y

* Insert statement X
after statement Y

* Delete statement X

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 23

O

o

An edit is:

* Replace statement

\‘ X with statement Y
J * Insert statement X
=’ after statement Y
* Delete statement X

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 24

L4
I
\

“

o

An edit is:
* Replace statement
X with statement Y

* Insert statement X
after statement Y

* Delete statement X

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 25

An edit is:
* Replace statement
X with statement Y

* Insert statement X
after statement Y

* Delete statement X

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 26

&
é
\
sﬁ_/
I
l
An ecﬁt IS:

* Replace statement
X with statement Y

=== TnSert statement X
after statement Y

* Delete statement X

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 27

&
é
\
sﬁ_/
I
l
An ecﬁt IS:

* Replace statement
X with statement Y

=== TnSert statement X
after statement Y

* Delete statement X

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 28

o

©

An edit is:

* Replace statement
X with statement Y

* Insert statement X
after statement Y

* Delete statement X

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 29

AUTOMATED PROGRAM REPAIR

GENPROG:
AUTOMATIC,
SCALABLE,
COMPETITIVE
BUG REPAIR.

AUTOMATED PROGRAM REPAIR

GENPROG:
AUTOMATIC,
SCALABLE,
COMPETITIVE
BUG REPAIR.

SCALABLE: SEARCH SPACE

o

Q

J

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 32

SCALABLE: SEARCH SPACE

o

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 33

SCALABLE: SEARCH SPACE

O

Y

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 34

SCALABLE: SEARCH SPACE

O

\-'

Fix localization:
intelligently
choose code to
move.

3
Y

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 35

SCALABLE: REPRESENTATION

Naive: New:

> i+ Delete(3)

E&3 Replace(3,5)

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 36

SCALABLE: REPRESENTATION

Naive: New:

n

New fitness, crossover, and 4 Delete(3)

mutation operators to work with
a variable-length genome.

Replace(3,9)

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 37

SCALABLE: PARALLELISM

Fithess:

* Subsample test
cases.

» Evaluate in parallel.
Random runs:

* Multiple
simultaneous runs
on different seeds.

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 38

AUTOMATED PROGRAM REPAIR

GENPROG:
AUTOMATIC,
SCALABLE,
COMPETITIVE
BUG REPAIR.

AUTOMATED PROGRAM REPAIR

GENPROG:
AUTOMATIC,
SCALABLE,
COMPETITIVE
BUG REPAIR.

How many bugs can GenProg fix?

COMPETITIVE

How much does it cost?

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 41

SETUP

Goal: systematically test GenProg on a
general, indicative bug set.

General approach:

* Avoid overfitting: fix the algorithm.

» Systematically create a generalizable
benchmark set.

* Try to repair every bug in the benchmark set,
establish grounded cost measurements.

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu

SETUP

Goal: systematically evaluate GenProg on a
general, indicative bug set.

General approach:

* Avoid overfitting: fix the algorithm.

» Systematically create a generalizable
benchmark set.

* Try to repair every bug in the benchmark set,
establish grounded cost measurements.

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 43

CHALLENGE:
INDICATIVE BUG SET

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 44

SYSTEMATIC BENCHMARK SELECTION

Goal: a large set of
important,
reproducible bugs in
non-trivial programs.

Approach: use
historical data to
approximate
discovery and repair
of bugs in the wild.

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 45

SYSTEMATIC BENCHMARK SELECTION

Consider top programs from SourceForge,
Google Code, Fedora SRPM, etc:

* Find pairs of viable versions where test case
behavior changes.
* Take all tests from most recent version.

* Go back in time through the source control.

Corresponds to a human-written repair for
the bug tested by the failing test case(s).

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 46

BENCHMARKS

E!EH

97,000 773 3 Language (legacy)

gmp 145,000 146 2 Multiple precision math
gzip 491,000 12 5 Data compression

libtiff 77,000 /8 24 Image manipulation
lighttpd 62,000 295 9 Web server

php 1,046,000 8,471 44 Language (web)

python 407,000 355 11 Language (general)
wireshark 2,814,000 / Network packet analyzer

MIE_

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 47

CHALLENGE:
GROUNDED COST
MEASUREMENTS

amazZon
webservices™

READY

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 51

GO

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 52

13 HOURS LATER

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 53

SUCCESS/COST
Defects | Cost per non-repair | Cost per repair
Program | Repaired

__Hours| US$| Hours| US$
fbc 1/3 8.52 5.56 6.52 4.08
gmp 1/2 9.93 6.61 1.60 0.44
gzip 1/5 5.11 3.04 1.41 0.30
libtiff 17124 7.81 5.04 1.05 0.04
lighttpd 5/9 10.79 7.25 1.34 0.25
php 28/44 13.00 8.80 1.84 0.62
python 1/11 13.00 8.80 1.22 0.16
wireshark 13.00 8.80 1.23 0.17

m—m-

$403 for all 105 trials, leading to 55 repairs; $7.32 per bug repaired.

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 54

PUBLIC COMPARISON

JBoss issue tracking: median 5.0, mean 15.3 hours.’

IBM: $25 per defect during coding, rising at build, Q&A,
post-release, etc.2

Tarsnap.com: $17, 40 hours per non-trivial repair.3
Bug bounty programs in general:

« At least $500 for security-critical bugs.
* One of our php bugs has an associated security CVE.

1C. Weil3, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it take to fix this bug?” in
Workshop on Mining Software Repositories, May 2007 .

2L. Williamson, “IBM Rational software analyzer: Beyond source code,” in Rational Software
Developer Conference, Jun. 2008.

3http://www.tarsnap.com/bugbounty.html

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 55

CONCLUSIONS/CONTRIBUTIONS

GenProg: scalable, automatic bug repair.

« Algorithmic improvements for scalability: fix localization,
internal representation, parallelism.
Systematic study:
* Indicative, systematically-generated set of bugs that
humans care about.

* Repaired 52% of 105 bugs in 96 minutes, on average,
for $7.32 each.

Benchmarks/results/source code/VM images available:

* http://genprog.cs.virginia.edu

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 56

| LOVE
QUESTIONS.

(Examples: “Which bugs can GenProg fix?” “What happens if you
run for more than 13 hours/change the probability distributions/
pick a different crossover/etc?” “How do you know the patches

are any good?” “How do your patches compare to human
patches?” ...)

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu o7

WHICH BUGS...?

Slightly more likely to fix bugs where the
human:

* restricts the repair to statements.

* touched fewer files.
As fault space decreases, success increases,
repair time decreases.

As fix space increases, repair time decreases.

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu

FINDING BUGS IS HARD

Opaque or non-automated GUI testing.

* Firefox, Eclipse, OpenOffice
Inaccessible or small version control histories.

* bash, cvs, openssh
Few viable versions for recent tests.
» valgrind
Require incompatible automake, libtool

- Earlier versions of gmp
No bugs

* GnuCash, openssil
Non-deterministic tests ...

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu

EXAMPLE: PHP BUG #54372

class test class {
public function get($n)
{ return Sthis; %S }
public function b()
{ return; }

Relevant code: function
zend std read property in
zend object handlers.c

Note: memory management uses

reference counting. '

global $test3;
Stest3 = new test class();
Stest3->a->b();

Problem: this line:

OW 00 J o6 O WDN R
e e e e e e e o o

449 .zval ptr dtor(object)

If object pointsto Sthis and
Sthis Is global, its memory is
completely freed, even though we Buggy output: crash on line 9.
could access $Sthis later.

Expected output: nothing

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 60

EXAMPLE: PHP BUG #54372

Human : GenProg:

& 449C449, 453 % 448c448,451

< yual otr dtor(sobiect). > Z_ADDROF_P(object);
zval_ptr_dtor(&o Jec)i S iF (PZVAL IS REF (object))

> if (*retval != object) > -

> { // expected > SEPARATE ZVAL(&object);

> zval ptr dtor(&object); > } B

> } else { zval ptr dtor(&object)

> 7 DELREF P(object); -

>}

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 61

PATCH QUALITY

Is automatically-patched code more or less
maintainable?

Approach: Ask 102 humans maintainability questions
about patched code (human vs. GenProg).

Results:

* No difference in accuracy/time between human
accepted and GenProg patches.

» Automatically-documented GenProg patches result in
higher accuracy and lower effort than human patches.

Zachary P. Fry, Bryan Landau, Westley Weimer: A Human Study of Patch
Maintainability. International Symposium on Software Testing and
Analysis (ISSTA) 2012: to appear

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 62

PATCH REPRESENTATION

m— Repair Ratio

infinite loop 1.07
unlq—utx segfault 1146 1.01
look-utx segfault 1169 1.00
look-svr infinite loop 1363 1.00
units-svr segfault 1504 3.13
deroff-utx segfault 2236 1.22
nullhttpd buffer exploit 9575 1.95
indent infinite loop 9906 1.70
flex segfault 18775 3.75
atris buffer exploit 21553 0.97

Average || s 16

Claire Le Goues, ICSE 2012 http://genprog.cs.virginia.edu 63

