A SYSTEMATIC STUDY OF AUTOMATED PROGRAM REPAIR: FIXING 55 OUT OF 105 BUGS FOR \$8 EACH Claire Le Goues Michael **Dewey-Vogt** Stephanie Forrest Westley Weimer "Everyday, almost 300 bugs appear [...] far too many for only the Mozilla programmers to handle." - Mozilla Developer, 2005 Annual cost of software errors in the US: \$59.5 billion (0.6% of GDP). # PROBLEM: BUGGY SOFTWARE Average time to fix a security-critical error: 28 days. # HOW BAD IS IT? **About Us** Community Map Our Projects Ge #### The Chromium Blog News and developments from the open source by #### **Bug Bounty Program** #### Introduction The Mozilla Security Bug Bounty Program is designed to encourage security research in Mozilla softv and to reward those who help us create the safest Internet clients in existence. Many thanks to Linspire and Mark Shuttleworth, who provided start-up funding for this endeavor. #### **General Bounty Guidelines** # **Tarsnap** Online backups for the truly paranoid | Tarsnap | | | | |----------------|--|--|--| | News | | | | | About | | | | | Legal | | | | | Infrastructure | | | | | Bug Bounty | | | | | Winners | | | | | Design | | | | #### **Tarsnap Bug Bounties** According to <u>Linus' Law</u>, "given enough eyeballs, all bugs ar This is one of the reasons why the Tarsnap client source code available; but merely making the source code available doesn't anything if people don't bother to read it. For this reason, Tarsnap has a series of *bug bounties*. Sin bounties offered by <u>Mozilla</u> and <u>Google</u>, the Tarsnap bug bount an opportunity for people who find bugs to win cash. Unlike thos the Tarsnap bug bounties aren't limited to security bugs. Dependent #### **Encouraging More Chromium Security Research** Thursday, January 28, 2010 Labels: googlechrome, security In designing Chromium, we've been working hard to make the browser as secure as possible. We've made strong improvements with the integrated sandboxing and our up-to-date user base. We're always looking to stay on top of the latest browser security features. We've also worked closely with the broader security community to get independent scrutiny and to quickly fix bugs that have been reported. Some of the most interesting security bugs we've fixed have been reported by researchers external to the Chromium project. For example, this same origin policy bypass from Isaac Dawson or this v8 engine bug found by the Mozilla Security Team. Thanks to the collaborative efforts of these people and others, Chromium security is stronger and our users are safer. Today, we are introducing an experimental new incentive for external researchers to participate. We will be rewarding select interesting and original vulnerabilities reported to us by the security research community. For existing contributors to Chromium security — who would likely continue to contribute regardless — this may be seen as a token of our appreciation. In addition, we are hoping that the introduction of this program will encourage new individuals to participate in Chromium security. The more people involved in scrutinizing Chromium's code and behavior, the more secure our millions of users will be. Such a concept is not new; we'd like to give serious kudos to the folks at Mozilla for their long-running and successful vulnerability reward program. Any valid security bug filed through the <u>Chromium bug tracker</u> (under the template "Security Bug") will qualify for consideration. As this is an experimental program, here are some guidelines in the form of questions and answers: #### Q) What reward might I get? A) As per Mozilla, our base reward for eligible bugs is \$500. If the panel finds a particular bug particularly severe or particularly clever, we envisage rewards of \$1337. The panel may also decide a single report actually constitutes multiple bugs. As a consumer of the Chromium open source project, Google will be sponsoring the rewards. #### Q) What bugs are eligible? A) Any security bug may be considered. We will typically focus on <u>High and Critical impact bugs</u>, but any clever vulnerability at any severity might get a reward. Obviously, your bug won't be eligible if you worked on the code or review in the area in question. #### Q) How do I find out my bug was eligible? A) You will see a provisional comment to that effect in the bug entry once we have triaged the bug. #### Q) What if someone else also found the same bug? A) Only the first report of a given issue that we were previously unaware of is eligible. In the event of a duplicate submission, the earliest filed bug report in the <u>bug tracker</u> is considered the first report. Sea Arch Apri Sub: More Visit inforr Usef Chro Gooc Gooc Gooc Gooc Webl Labe acces benc beta chror chror chror chror cloud dart (4 endangered the security of Mozilla's end users. If two or more people report the bug together the reward will be divided among an opportunity for people who find bugs to will cash. Offlike those bounds the Tarsnap bug bounties aren't limited to security bugs. Depending on t type of bug and when it is reported, different bounties will be awarded: #### Client Reward Guidelines The bounty for valid critical client security bugs will be \$3000 (US) cash reward The bounty will be awarded for sg:critical and sg:high severity security bugs that criteria: - Security bug is present in the most recent supported, beta or release cand Thunderbird, Firefox Mobile, or in Mozilla services which could compron products, as released by Mozilla Corporation or Mozilla Messaging. - Security bugs in or caused by additional 3rd-party software (e.g. plugins, from the Bug Bounty program. More information about this program can be found in the Client Security Bug B ### Web Application and Services Reward Guidel The bounty for valid web applications or services related security begs, we are given by the security begs, we are given by the security and, in some cases, may pay up to \$3000 US) for examerabilities. We will also include a Mozilla T-shirt. The bounty and be awarded weshigh security bugs that meet the following criteria: - Security bug is present in the web properties outlined in the Web Applicat - Security bug is on the list of sites which part of the bounty. See the eligible The pre-release bounty value will be awarded for bugs reported in target Application Security Bounty FAQ for the list of sites which is included uninterval between when a new Tarsnap release is sent to the tarsnap More information about this program can be found in the Web Application Security Bounty FAQ. | Bounty
value | Pre-release
bounty value | Type of bug | |-----------------|-----------------------------|--| | \$1000 | \$2000 | A bug which allows someone intercepting Tarsna traffic to decrypt Tarsnap users' data. | | \$500 | \$1000 | A bug which allows the Tarsnap service to decry Tarsnap users' data. | | \$500 | \$1000 | A bug which causes data corruption or loss. | | \$100 | \$200 | A bug which causes Tarsnap to crash (without corrupting data or losing any data other than an archive currently being written). | | \$50 | \$100 | Any other non-harmless bugs in Tarsnap. | | \$20 | \$40 | Build breakage on a platform where a previous Tarsnap release worked. | | \$10 | \$20 | "Harmless" bugs, e.g., cosmetic errors in Tarsna
output or mistakes in source code comments. | | \$1 | \$2 | Cosmetic er ors in the Tarsnap source code or website, e.g., typos in website text or source cocomments. Style errors in Tarsnap code qualify here, but usually not style errors in upstream coc (e.g., libarchive). | # ...REALLY? Privacy | Security Hardware and Software Home > Security #### News # Google calls, raises Mozilla's bug bounty for Chrome flaws Boosts cash-for-bugs maximum payment to \$3,133, makes researchers mostly happy #### By Gregg Keizer July 22, 2010 11:59 AM ET What's this? Computerworld - Google on Tuesday hiked bounty payments for Chrome bugs to a maximum of \$3,133, up almost \$2,000 from the previous top dollar payout of \$1,337. The move came less than a week after rival browser maker <u>Mozilla increased</u> <u>Firefox bug bounties</u> to \$3,000. In an entry to the <u>Chromium project's blog</u>, Chris Evans, who works on the Chrome security team, announced the new maximum bounty of \$3.133.70 and said Google would "most likely" award that amount for all vulnerabilities rated "critical" in the company's four-step scoring system. "The increased reward reflects the fact that the sandbox makes it harder to find bugs of this severity," said Evans, referring to the technology baked into Chrome that isolates processes from one another and the rest of the machine, preventing or at least hindering malicious code from escaping an application to wreak havoc or infect the computer. ## Tarsnap: 125 spelling/style 63 harmless 11 minor + 1 major # 75/200 = 38% TP rate \$17 + 40 hours per TP which were wrong yet didn't actually affect the compiled code. But most importantly, \$1265 of bugs gives me the peace of mind of knowing that I'm not the only person who has looked at the Tarsnap code, and if there are more critical bugs like the <u>security bug</u> I fixed in January, they've escaped more than just my eyeballs. Worth the money? Every penny. # ...REALLY? Privacy | Security Hardware and Software Home > Security #### News #### Google calls, raises Mozilla's bug bounty for Chrome flaws Boosts cash-for-bugs maximum payment to \$3,133, makes researchers mostly happy #### By Gregg Keizer July 22, 2010 11:59 AM ET 2 Comments Vhat's this? Computerworld - Google on Tuesday hiked bounty payments for Chrome bugs to a maximum of \$3,133, up almost \$2,000 from the previous top dollar payout of \$1,337. The move came less than a week after rival browser maker <u>Mozilla increased</u> Firefox bug bounties to \$3,000. In an entry to the <u>Chromium project's blog</u>, Chris Evans, who works on the Chrome security team, announced the new maximum bounty of \$3.133.70 and said Google would "most likely" award that amount for all vulnerabilities rated "critical" in the company's four-step scoring system. "The increased reward reflects the fact that the sandbox makes it harder to find bugs of this severity," said Evans, referring to the technology baked into Chrome that isolates processes from one another and the rest of the machine, preventing or at least hindering malicious code from escaping an application to wreak havoc or infect the computer. ## Tarsnap: 125 spelling/style 63 harmless 11 minor + 1 major # 75/200 = 38% TP rate \$17 + 40 hours per TP which were wrong yet didn't actually affect the compiled code. But most importantly, \$1265 of bugs gives me the peace of mind of knowing that I'm not the only person who has looked at the Tarsnap code, and if there are more critical bugs like the <u>coorny out</u> I nixed in January they've escaped more than just my eyeba 1s. Worth the money? Every penny. # ...REALLY? Privacy | Security Hardware and Software Home > Security Goc Chr which were wrong yet didn't actually affect the compiled code. Boost mostly By Greg July 22, 2 But most importantly, \$1265 of bugs gives me the peace of mind of knowing that I'm not the only person who has looked at the Tarsnap code, and if there are more critical bugs like the security bug I fixed in January, they've escaped more than just my eyeballs. Worth the money? Every penny. Completo a moof \$1,3 The m Firefox bug bounties to \$3,000. In an entry to the <u>Chromium project's blog</u>, Chris Evans, who works on the Chrome security team, announced the new maximum bounty of \$3.133.70 and said Google would "most likely" award that amount for all vulnerabilities rated "critical" in the company's four-step scoring system. "The increased reward reflects the fact that the sandbox makes it harder to find bugs of this severity," said Evans, referring to the technology baked into Chrome that isolates processes from one another and the rest of the machine, preventing or at least hindering malicious code from escaping an application to wreak havoc or infect the computer. which were wrong yet didn't actually affect the compiled code. But most importantly, \$1265 of bugs gives me the peace of mind of knowing that I'm not the only person who has looked at the Tarsnap code, and if there are more critical bugs like the <u>coorny oug</u> I nixed in Samuery they've escaped more than just my eyeba ls. Worth the money? Every penny. 0 4 4 4 2044 00 2000 201D 40 4 140 0 # SOLUTION: PAY STRANGERS # SOLUTION: PAYSTRANGERS # SOLUTION: AUTOMATE # **GENPROG:** AUTOMATIC¹, SCALABLE, COMPETITIVE BUG REPAIR. ¹ C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, "GenProg: A generic method for automated software repair," *Transactions on Software Engineering*, vol. 38, no. 1, pp. 54–72, 2012. W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, "Automatically finding patches using genetic programming," in *International Conference on Software Engineering*, 2009, pp. 364–367. # **GENPROG:** AUTOMATIC1, SCALABLE, COMPETITIVE BUG REPAIR. ¹ C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, "GenProg: A generic method for automated software repair," *Transactions on Software Engineering*, vol. 38, no. 1, pp. 54–72, 2012. W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, "Automatically finding patches using genetic programming," in *International Conference on Software Engineering*, 2009, pp. 364–367. Claire Le Goues, ICSE 2012 **MUTATE** # **BIRD'S EYE VIEW** Search: random (GP) search through nearby patches. Approach: compose small random edits. - Where to change? - How to change it? # **SCALABLE: REPRESENTATION** # **Input:** #### **SCALABLE: REPRESENTATION** #### **SCALABLE: PARALLELISM** #### Fitness: - Subsample test cases. - Evaluate in parallel. #### **Random runs:** Multiple simultaneous runs on different seeds. #### **AUTOMATED PROGRAM REPAIR** **GENPROG:** AUTOMATIC, SCALABLE, COMPETITIVE **BUG REPAIR.** #### **AUTOMATED PROGRAM REPAIR** **GENPROG:** AUTOMATIC, SCALABLE, COMPETITIVE **BUG REPAIR.** #### How many bugs can GenProg fix? ## COMPETITIVE How much does it cost? #### **SETUP** Goal: systematically test GenProg on a general, indicative bug set. #### **General approach:** - Avoid overfitting: fix the algorithm. - Systematically create a generalizable benchmark set. - Try to repair every bug in the benchmark set, establish grounded cost measurements. #### **SETUP** Goal: systematically evaluate GenProg on a general, indicative bug set. #### **General approach:** - Avoid overfitting: fix the algorithm. - Systematically create a generalizable benchmark set. - Try to repair every bug in the benchmark set, establish grounded cost measurements. ## CHALLENGE: INDICATIVE BUG SET #### SYSTEMATIC BENCHMARK SELECTION Goal: a large set of important, reproducible bugs in non-trivial programs. Approach: use historical data to approximate discovery and repair of bugs in the wild. #### SYSTEMATIC BENCHMARK SELECTION ## Consider top programs from SourceForge, Google Code, Fedora SRPM, etc: - Find pairs of viable versions where test case behavior changes. - Take all tests from most recent version. - Go back in time through the source control. Corresponds to a human-written repair for the bug tested by the failing test case(s). #### **BENCHMARKS** | Program | LOC | Tests | Bugs | Description | |-----------|-----------|--------|------|-------------------------| | fbc | 97,000 | 773 | 3 | Language (legacy) | | gmp | 145,000 | 146 | 2 | Multiple precision math | | gzip | 491,000 | 12 | 5 | Data compression | | libtiff | 77,000 | 78 | 24 | Image manipulation | | lighttpd | 62,000 | 295 | 9 | Web server | | php | 1,046,000 | 8,471 | 44 | Language (web) | | python | 407,000 | 355 | 11 | Language (general) | | wireshark | 2,814,000 | 63 | 7 | Network packet analyzer | | Total | 5,139,000 | 10,193 | 105 | | # CHALLENGE: GROUNDED COST MEASUREMENTS ## READY ## 13 HOURS LATER #### SUCCESS/COST | | Defects | Cost per non-repair | | Cost per repair | | |-----------|----------|---------------------|------|-----------------|------| | Program | Repaired | Hours | US\$ | Hours | US\$ | | fbc | 1/3 | 8.52 | 5.56 | 6.52 | 4.08 | | gmp | 1/2 | 9.93 | 6.61 | 1.60 | 0.44 | | gzip | 1/5 | 5.11 | 3.04 | 1.41 | 0.30 | | libtiff | 17/24 | 7.81 | 5.04 | 1.05 | 0.04 | | lighttpd | 5/9 | 10.79 | 7.25 | 1.34 | 0.25 | | php | 28/44 | 13.00 | 8.80 | 1.84 | 0.62 | | python | 1/11 | 13.00 | 8.80 | 1.22 | 0.16 | | wireshark | 1/7 | 13.00 | 8.80 | 1.23 | 0.17 | | Total | 55/105 | 11.22h | | 1.60h | | \$403 for all 105 trials, leading to 55 repairs; \$7.32 per bug repaired. #### **PUBLIC COMPARISON** JBoss issue tracking: median 5.0, mean 15.3 hours.¹ IBM: \$25 per defect during coding, rising at build, Q&A, post-release, etc.² Tarsnap.com: \$17, 40 hours per non-trivial repair.3 #### **Bug bounty programs in general:** - At least \$500 for security-critical bugs. - One of our php bugs has an associated security CVE. ¹C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller, "How long will it take to fix this bug?" in *Workshop on Mining Software Repositories*, May 2007. ²L. Williamson, "IBM Rational software analyzer: Beyond source code," in *Rational Software Developer Conference*, Jun. 2008. ³http://www.tarsnap.com/bugbounty.html #### **CONCLUSIONS/CONTRIBUTIONS** #### GenProg: scalable, automatic bug repair. Algorithmic improvements for scalability: fix localization, internal representation, parallelism. #### **Systematic study:** - Indicative, systematically-generated set of bugs that humans care about. - Repaired 52% of 105 bugs in 96 minutes, on average, for \$7.32 each. #### Benchmarks/results/source code/VM images available: http://genprog.cs.virginia.edu ## I LOVE QUESTIONS. (Examples: "Which bugs can GenProg fix?" "What happens if you run for more than 13 hours/change the probability distributions/ pick a different crossover/etc?" "How do you know the patches are any good?" "How do your patches compare to human patches?" ...) #### WHICH BUGS...? ## Slightly more likely to fix bugs where the human: - restricts the repair to statements. - touched fewer files. As fault space decreases, success increases, repair time decreases. As fix space increases, repair time decreases. #### **FINDING BUGS IS HARD** #### Opaque or non-automated GUI testing. Firefox, Eclipse, OpenOffice #### Inaccessible or small version control histories. bash, cvs, openssh #### Few viable versions for recent tests. valgrind #### Require incompatible automake, libtool Earlier versions of gmp #### No bugs GnuCash, openssl #### Non-deterministic tests ... #### **EXAMPLE: PHP BUG #54372** Relevant code: function zend_std_read_property in zend object handlers.c **Note:** memory management uses reference counting. **Problem:** this line: ``` 449.zval_ptr_dtor(object) ``` If object points to \$this and \$this is global, its memory is completely freed, even though we could access \$this later. **Expected output:** nothing Buggy output: crash on line 9. #### **EXAMPLE: PHP BUG #54372** #### **Human:** ``` % 449c449,453 < zval_ptr_dtor(&object); > if (*retval != object) > { // expected > zval_ptr_dtor(&object); > } else { > Z_DELREF_P(object); > } ``` #### GenProg: ``` % 448c448,451 > Z_ADDROF_P(object); > if (PZVAL_IS_REF(object)) > { > SEPARATE_ZVAL(&object); > } zval_ptr_dtor(&object) ``` ### PATCH QUALITY Is automatically-patched code more or less maintainable? Approach: Ask 102 humans maintainability questions about patched code (human vs. GenProg). #### **Results:** - No difference in accuracy/time between human accepted and GenProg patches. - Automatically-documented GenProg patches result in higher accuracy and lower effort than human patches. Zachary P. Fry, Bryan Landau, Westley Weimer: <u>A Human Study of Patch Maintainability.</u> International Symposium on Software Testing and Analysis (ISSTA) 2012: to appear #### PATCH REPRESENTATION | Program | Fault | LOC | Repair Ratio | |------------|----------------|-------|--------------| | gcd | infinite loop | 22 | 1.07 | | uniq-utx | segfault | 1146 | 1.01 | | look-utx | segfault | 1169 | 1.00 | | look-svr | infinite loop | 1363 | 1.00 | | units-svr | segfault | 1504 | 3.13 | | deroff-utx | segfault | 2236 | 1.22 | | nullhttpd | buffer exploit | 5575 | 1.95 | | indent | infinite loop | 9906 | 1.70 | | flex | segfault | 18775 | 3.75 | | atris | buffer exploit | 21553 | 0.97 | | Average | | 6325 | 1.68 |