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Abstract—The field of automated software repair lacks a set of common benchmark problems. Although benchmark sets are used
widely throughout computer science, existing benchmarks are not easily adapted to the problem of automatic defect repair, which has
several special requirements. Most important of these is the need for benchmark programs with reproducible, important defects and
a deterministic method for assessing if those defects have been repaired. This article details the need for a new set of benchmarks,
outlines requirements, and then presents two datasets, MANYBUGS and INTROCLASS, consisting between them of 1,183 defects in
15 C programs. Each dataset is designed to support the comparative evaluation of automatic repair algorithms asking a variety of
experimental questions. The datasets have empirically defined guarantees of reproducibility and benchmark quality, and each study
object is categorized to facilitate qualitative evaluation and comparisons by category of bug or program. The article presents baseline
experimental results on both datasets for three existing repair methods, GenProg, AE, and TrpAutoRepair, to reduce the burden on
researchers who adopt these datasets for their own comparative evaluations.
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1 INTRODUCTION

R EPRODUCIBLE research is a concern throughout sci-
ence. In a 2013 article “How Science Goes Wrong”,

The Economist criticized research validity in fields ranging
from biotechnology (“half of published research cannot
be replicated”) to computer science (“three-quarters of
papers in [a] subfield are bunk”) [29]. Similarly, in early
2014, the President’s Commission to Advance Science and
Technology (PCAST) held a meeting devoted to the many
problems of irreproducible and incomparable results in
science [64]. The carefully controlled, reproducible ex-
periment is a bedrock principle of modern science, but
as these two examples highlight, it is a concept that is
more easily stated than implemented. Problems arise
from poor statistical methodology, sloppy experimental
design, inadequate reviewing, and idiosyncratic data sets.
Computer science has historically addressed this last
problem through the use of standardized benchmark
problems, e.g., [10], [13], [72]. A well-designed benchmark
set simplifies experimental reproduction, helps ensure
generality of results, allows direct comparisons between
competing methods, and over time enables measurement
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of a field’s technical progress.
A common set of benchmarks and evaluation method-

ologies are good for a research subfield in additional
ways. They stimulate cohesion, collaboration, and tech-
nical progress within a community. Sim et al. argue that
benchmarks capture a discipline’s dominant research
paradigms and represent (and by extension, can promote)
consensus on which problems are worthy of study [70].
When a research subfield reaches a sufficient level of
maturity, common sets of study objects and baselines, i.e.,
benchmarks, become instrumental for further progress.

Since 2009, research in automated program repair, a sub-
field of software engineering, has grown to the point that
it would benefit from carefully constructed benchmarks.
Software quality in general, and software maintenance in
particular, remain pressing problems [16]. Defect repair
is critical to software maintenance, and there has been
significant progress in automated approaches to repairing
software defects. Research in automated repair has grown
considerably in the past decade, as evidenced by the
number of separate projects in the research literature today
(e.g., [20], [22], [25], [44], [47], [52], [58], [63], [73], [76]).
This influx of new ideas is exciting and suggests a promis-
ing future for automated software engineering in research
and practice. Few of these publications, however, include
direct empirical comparisons with other approaches. Thus,
it is currently difficult to evaluate how different algorithms
or assumptions perform relative to one another, or to
particular classes of defects or programs.

We believe that the rigorous, reproducible evaluation of
and between techniques is critical to allowing researchers
to move from questions such as “can this be done at all?” to
“why does this work, and under what circumstances?” For
example, since 2002, the “MiniSAT Hack” standardized
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benchmarks and challenges (associated with the Inter-
national Conferences on the Theory and Applications
of Satisfiability Testing, e.g., SAT 2013 [40] and SAT
2014 [30]) have helped foster significant improvement and
interest in state-of-the-art SAT solvers. While we are not
proposing an explicit human competition in the vein of
the MiniSAT Hack, experiments that improve on prior
results using the same methodology and benchmarks do
lead to direct competition and the ability to compare and
contrast research advances. This sort of direct competition
is possible only when benchmarks are available to serve
as a basis for comparison.

Popular benchmarks such as SPEC [72] are inappro-
priate for automated repair research because they do
not contain explicit defects, and the common practice
of manually selecting evaluation subjects for each new
technique, while reasonable in a nascent subfield, cannot
ultimately establish general results. This suggests a need
for new benchmarks, tailored to the requirements of
research in automated program repair.

This article presents two benchmark sets consisting
of defects1 in C programs: MANYBUGS and INTRO-
CLASS. The benchmarks are available for download:
http://repairbenchmarks.cs.umass.edu/. Both benchmark
sets are designed to support research on automatic pro-
gram repair, targeting large-scale production programs
(MANYBUGS) and smaller programs written by novices
(INTROCLASS). We describe the methodologies in detail to
encourage the community to provide additional scenarios
and keep the benchmarks up to date as new types of
programs and bugs emerge. We also provide baseline
results of existing techniques on these benchmarks, against
which future research can be compared.

The primary contributions of this article are:
• The MANYBUGS dataset, which consists of 185 defects

in nine open-source programs. The programs are large,
popular, open-source projects, and each defect has at
least one corresponding patch and test case written by
an original developer. The defects were captured system-
atically through version control repositories (rather than
from explicit developer annotations) from all viable ver-
sion control versions within given time windows. The
goal is to support indicative longitudinal studies within
each program and latitudinal studies across programs.
To ensure reproducibility, we provide virtual machine
images on which the programs and defects are known
to execute as described. Each program and defect pair
has been manually categorized and classified, providing
a starting place for qualitative analyses of techniques. In
total, the MANYBUGS benchmark programs include 5.9
million lines of code and over 10,000 test cases.

• The INTROCLASS dataset, which consists of 998 defects
in student-written versions of six small C programming
assignments in an introductory, undergraduate C pro-
gramming course. Each of the six assignments asks

1. We use the terms bug and defect interchangeably throughout this
article, referring to the colloquial meaning, that is, undesired program
behavior that a programmer would like to repair.

students to write a C program that satisfies a carefully
written specification and allows them to test under-
development programs against an instructor-written
test suite. The defects (test case failures) are collected
from these tested versions. For each such defective
program, the benchmark also includes the final program
submitted by that student, some of which pass all of
the test cases. The six oracle programs, each imple-
menting one of the six assignment specifications, total
114 lines of code. Each assignment’s two independent
test suites comprise 95 tests in total. The programs’
small sizes, well-defined requirements, and numerous
varied human implementations enable studies that
would be difficult with MANYBUGS, particularly stud-
ies benefiting from larger numbers of defects, or of
techniques that do not yet scale to real-world software
systems or involve novice programmers. INTROCLASS
also supports comprehensive, controlled evaluations of
factors that affect automated program repair.

• A qualitative analysis and categorization of the bench-
mark programs and defects. We manually categorize
the bugs by defect feature, providing a starting point
to evaluate strengths and weaknesses of a given repair
technique with respect to given defect types.

• Baseline experimental results and timing measurements
for three existing repair algorithms, GenProg [51], [52],
[76], AE [75], and TrpAutoRepair [66].

An initial 105-defect subset of the MANYBUGS bench-
mark set was previously used as part of a systematic
evaluation of one repair method, GenProg [49]. A subset
of those original scenarios was similarly used by others
to evaluate TrpAutoRepair [66] (TrpAutoRepair was also
published under the name RSRepair in “The strength of
random search on automated program repair” by Yuhua
Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong
Wang in the 2014 International Conference on Software
Engineering; in this article, we use the original name, as it
is associated with the complete algorithm description.) The
INTROCLASS benchmark was similarly used in another
evaluation of GenProg [17], [71]. This article focuses on
the benchmarks and associated generation methodology.
The MANYBUGS benchmark significantly extends the
previous set, and includes an additional subject program
(valgrind) and additional scenarios from other subjects
(python, php, wireshark). The expansion of the php set
enables an additional type of longitudinal experiment of
repeated defect repair in one subject program. We have
also modified and added more rigorous validation of all
of the scenarios to provide stronger guarantees about
their utility in automatic program repair experiments.
Finally, we improved the usability of the INTROCLASS
benchmark, categorized all of the defects, and formalized
the methodology used to create the dataset.

The rest of this article proceeds as follows. Section 2
discusses the importance and increasing prevalence of
research in automatic program repair and the problems
with current empirical evaluations in the area. Section 3

http://repairbenchmarks.cs.umass.edu/
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outlines our goals in designing and evaluating the bench-
mark sets. Sections 4 and 5, respectively, present the
methodology for generating the MANYBUGS and INTRO-
CLASS benchmarks, outline the programs and defects,
and overview the released scenarios. Section 6 presents
baseline empirical repair results for three automated repair
methods, GenProg, TrpAutoRepair, and AE, on the two
benchmark sets. Section 7 places our work in the context of
related research, Section 8 outlines threats to validity, and
Section 9 summarizes our contributions and conclusions.

2 MOTIVATION

We motivate the need for widely accessible benchmarks for
research in automated program repair by first emphasiz-
ing the importance of the research area, then discussing the
increasing maturity of the subfield, and finally outlining
some deficiencies in current empirical evaluations.

2.1 Program repair is an important problem

The cost of debugging and maintaining software has
continued to rise, even while hardware and many soft-
ware costs fall. In 2006, one Mozilla developer noted,
“everyday, almost 300 bugs appear [. . . ] far too much for
only the Mozilla programmers to handle” [6, p. 363]. The
situation has hardly improved in the intervening years,
as bugzilla.mozilla.org indicates similar rates of bugs
reported in 2013. A 2013 study estimated the global cost
of debugging at $312 billion, with software developers
spending half their time debugging [16]. Since there are
not enough developer resources to repair all of these
defects before deployment, it is well known that programs
ship with both known and unknown bugs [53].

In response to this problem, many companies offer bug
bounties that pay outside developers for candidate repairs
to their open source code. Well-known companies such as
Mozilla ($3,000/bug) [1], Google ($500/bug) [2], and Mi-
crosoft ($10,000/bug) [3], ($10,000/bug) offer significant
rewards for security fixes, reaching thousands of dollars
and engaging in bidding wars [79]. While many bug
bounties simply ask for defect reports, other companies,
such as Microsoft, reward defensive ideas and patches as
well (up to $50,000/fix) [4].

The abundance and success of these programs suggests
that the need for repairs is so pressing that some com-
panies must consider outside, untrusted sources, even
though such reports must be manually reviewed, most are
rejected, and most accepted repairs are for low-priority
bugs [5]. A technique for automatically generating patches,
even if those patches require human evaluation before
deployment, could fit well into this paradigm, with po-
tential to greatly reduce the development time and costs
of software debugging. These examples also suggest that
benchmarks for automatic program repair should address
success metrics relevant to real-world debugging, which
include the fraction of queries that produce code patches,
monetary cost, and wall-clock time cost.

2.2 Automatic program repair
The importance of defects in software engineering practice
is reflected in software engineering research. Since 2009,
when automated program repair was demonstrated on
real-world problems (PACHIKA [23], ClearView [63],
GenProg [76]), interest in the field has grown steadily,
with multiple novel techniques proposed (e.g., Debroy and
Wong [25], AutoFix-E [73], ARMOR [21], [20], AFix [44],
AE [75], Coker and Hafiz [22], PAR [47], SemFix [58],
TrpAutoRepair [66] Monperrus [56], Gopinath et al. [35],
MintHint [46], etc.). Some of these methods produce
multiple candidate repairs, and then validate them using
test cases, such as by using stochastic search or methods
based on search-based software engineering [37] (e.g.,
GenProg, PAR, AutoFix-E, ClearView, Debroy and Wong,
TrpAutoRepair). Others use techniques such as synthesis
or constraint solving to produce smaller numbers of
patches that are correct by construction (e.g., Gopinath et
al., AFix, etc.) relative to inferred or human-provided
contracts or specifications. We provide a more thorough
treatment of related work in Section 7.

Several recent studies have established the potential of
these techniques to reduce costs and improve software
quality, while raising new questions about the acceptabil-
ity of automatically generated patches to humans. See,
for example, the systematic study of GenProg, which
measured cost in actual dollars [49] and related studies
that assess the acceptability of automatically generated
patches [47], [33].

As automatic repair research has matured, interest
has moved from proof-of-concept evaluations to broader
qualitative questions that identify the circumstances un-
der which automatic repair is most appropriate. As an
indicative example of conventional wisdom, Thomas
Zimmermann of Microsoft Research claimed that, “one of
the challenges will be to identify the situations when and
where automated program repair can be applied. I don’t
expect that program repair will work for every bug in the
universe (otherwise thousands of developers will become
unemployed), but if we can identify the areas where it
works in advance there is lots of potential.” [74, slide 67]2

Taken together, this body of work and commentary
show the promise of automated software repair methods,
and it highlights the need to understand and improve
the quality of the automated repair methods before they
can be adopted widely in practice. The rapid growth and
increasing maturity of the research area suggests a need
for community discussion and consensus on evaluation
methodology. While the work to date is promising in
providing proofs of concept, larger-scale, generalizable
and comparative evaluations will be necessary to support
conclusions about practical feasibility.

2.3 Empirical evaluations
The vast majority of published papers on software defect
detection, localization, and repair use empirical evaluation

2. http://www.cs.virginia.edu/∼weimer/p/weimer-ssbse2013.pdf

bugzilla.mozilla.org
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to demonstrate the effectiveness of the method. Typically,
a repair technique is proposed and then tested on a
collection of bugs in one or more programs. When chosen
carefully, such studies provide evidence that the technique
in question will generalize or scale to different or larger
projects. Studies of this type tend to use bugs from one or
a combination of three sources:

• Defects in the Wild. A number of studies of automatic
bug finding, localization, and fixing techniques have
used bugs “in the wild,” found through ad hoc case
studies, manual search through bug databases, indus-
trial partnerships, and word-of-mouth (e.g., [53], [63],
[52]). We previously took this approach to evaluate
GenProg on a variety of defect types [52]. Similarly,
ClearView [63] was evaluated (both in terms of patching
success and via a Red Team evaluation) on a set of
previously identified vulnerabilities from historical bug
reports for the FireFox web browser; these bugs fell into
particular defect classes that are handled by ClearView’s
underlying vulnerability detector.

• Systematic search. A dataset constructed by collecting
defects in a systematic fashion helps avoid biased evalu-
ations. The benchmark set (described earlier) that was
created to support a large-scale evaluation of GenProg
was one of the first examples of a publicly available,
systematically assembled set of bugs constructed specif-
ically for studies of automated program repair [49].
The approach behind the iBugs [24] and Defects4J [45]
share some features with the MANYBUGS methodology
but focus on Java benchmarks suitable for evaluating
research in fault localization and testing, respectively.
These datasets or the underlying methodologies could
possibly be adapted for systematic evaluations of au-
tomatic program repair research, although we are un-
aware of any such efforts to date.

• Existing datasets. There are several existing repositories
of programs associated with test suites, some of which
can be and have been adapted for empirical evaluations
of program repair research. These repositories were
designed for research on software testing (similar to
iBugs). For example, the Software Artifact Infrastructure
Repository (SIR) [27], is described by its maintainers as
“a repository of software-related artifacts meant to sup-
port rigorous controlled experimentation with program
analysis and software testing techniques, and education
in controlled experimentation.” Some evaluations have
used the SIR repository, focusing primarily on the subset
constituting the Siemens benchmark suite [39], which
currently consists of 8 programs of 173–726 lines of code.
The SIR C suite overall contains 15 programs ranging
from 173 lines (tcas) to over 120,000 lines (vim), although
we are unaware of evaluations that include the latter.
Because SIR is intended to support controlled evalu-
ations of testing research, the test suites were created
to maximize coverage, and the majority of the faults
are seeded. These conditions are not representative
of real-world development, where, for example, test

suite coverage is often far from maximal and faults
occur naturally during development. The SAMATE
benchmark [57], constructed by NIST to demonstrate
particular common classes of security errors in design,
source code, and binaries. Coker and Hafiz used some
of these programs in an empirical evaluation [22]. The
Defects4J benchmark [45] includes 357 bugs and 20,109
tests in 5 real-world programs, and targets testing
techniques, specifically focusing on mutation testing.
Evaluations have used Defects4J to show that mutants
are a valid substitute for real faults in software test-
ing [45] and to measure how likely humans are to accept
automatically generated patches [28]. These datasets are
most suitable for the controlled experiments for which
they were designed, such as measuring success relative
to test suite coverage or defect type.
Few of the published automated software repair projects

report direct comparisons to previous work, which mo-
tivates our inclusion of baseline repair results. However,
three recent publications do include empirical compar-
isons, each featuring a different repair method: PAR [47],
SemFix [58], and TrpAutoRepair [66]. All three compare
new and existing techniques’ performance on a new
dataset (SemFix and TrpAutoRepair compared to previ-
ously released versions of GenProg, and PAR compared to
a GenProg reimplementation for Java). Such approaches
are scientifically valuable because they make direct empiri-
cal comparisons, and reuse and reproduce an existing tech-
nique. However, repeatedly selecting new benchmarks
and reimplementing algorithms duplicates work, and
introduces subtle variations to technique implementations.

Direct comparisons are rare in part because it is often
difficult to reproduce both the defects to be repaired
and the existing techniques. Although publicly available
codebases help the latter problem, exact replication of
experimental conditions typically requires significantly
more detailed information than can be included in a
standard conference publication. Reproducing a defect
requires knowledge of, and access to, at least (1) the exact
version of the source code containing the defect; (2) the test
case(s) or specifications used to demonstrate the problem
and specify correct behavior, if applicable; (3) instructions
for running test cases for a particular tool, e.g., as part
of a framework (JUnit) or individually, perhaps with a
custom script; (4) compilation mechanism, including the
specific compiler and its version, or other support scripts;
and (5) the operating system or platform and all associated
libraries, which can impact the defect or how it manifests,
e.g., integer overflows on 32- vs 64-bit architectures.

A second set of difficulties arises if the repair methods
have stochastic elements and a large set of parameters. In
many cases, these are not delineated in enough detail to
replicate results. Although researchers are increasingly
releasing specific details in technical reports or other
external data artifacts to support reproducibility, such
efforts are not yet the norm.

One critical concern in empirical evaluation is how the
dataset is selected. For automated repair, for example,
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we are interested in how defects are sampled from the
real world. A recent critical review of GenProg and PAR
discusses this issue in detail [56, Sec. 3.2.1]: A benchmark
made entirely of bugs of category X favors techniques
that perform well on X . Ideally, a benchmark set for
this domain will be indicative of bugs encountered in
development practice, and defect categories will occur
in the benchmark set in the same proportion that they
occur in reality. In practice, such determinations are hard
to make, especially in the face of ever-changing technology.
This is evident in the evolution of the popular SPEC
benchmarks, which are ubiquitous in evaluating compiler
optimizations [72], and which are often reselected and
revised as the field and available hardware advances.

Motivated by these issues, this article presents a bench-
mark set of program defects that are deterministic and
reproducible, with the goal of enhancing the a wide
range of experiments with different methods for automatic
program repair.

3 GENERATING THE BENCHMARKS

A benchmark is a standard or point of reference against
which something can be compared or assessed. A bench-
mark for evaluating program repair techniques consists of
a program with a defect and a mechanism for evaluating
the correctness of a repair for that defect. A benchmark set
is a set of such defects in programs. In the ideal case, the
benchmark set allows quantitative and qualitative analysis
of the characteristics of a given program repair technique.
Complete evaluation on a particular defect requires a
defect scenario, which consists of: a software system with a
defect; the environment it runs in; a witness to the defect; a
specification of correct behavior; and optionally, a human-
supplied repair. This section describes these requirements
for both complete defect scenarios and a collection of them.

3.1 Individual scenarios

A defect scenario consists of:
• A partial or complete software system with a defect

(for example, a source-tree snapshot of an off-the-
shelf C program, including Makefiles). This is the
program that a repair algorithm will attempt to repair.
Repair methods target different representation levels,
including the source code text itself, the compiled
binary, or an intermediate representation such as an
abstract syntax tree (AST) or LLVM Intermediate
Representation. Including the full source tree and
compilation mechanisms allows the benchmarks to
support experiments at any of these representation
levels.

• An environment in which the program can be reliably
and deterministically compiled and executed. Many
repair techniques are dynamic or have dynamic
components, and thus require the ability to compile
and execute both the original program and variants.
The size and complexity of the software system

under repair typically contributes to the complexity
of the environment. Reproducing a set of program
behaviors deterministically often depends on fac-
tors like system architecture, installed libraries, or
operating system. Thus, for the larger programs in
the MANYBUGS set, we provide a virtual machine
image that includes all necessary library versions and
compilation scripts (see Section 4.4). This simplifies
reproduction of the defects in question. By contrast,
and by design, the smaller programs in the INTRO-
CLASS set have few environmental dependencies,
and thus can be compiled and run reliably given a set
of common flags to the gcc compiler.

• A witness to the defect, such as one or more test cases
that the program fails. This identifies the bug, usually
corresponding to a test case the software system is
currently failing. The witness also identifies repairs
for the defect by describing expected correct behavior.

• A (partial) specification of correct behavior. For ex-
ample, a test suite produced by the original applica-
tion developers that the program snapshot currently
passes. Although test cases are at best partial and
imperfect measures of program correctness or quality,
they are by far the most prevalent technique for
establishing correctness in practice. Other specifica-
tion mechanisms, such as invariants, annotations,
or supportive documentation, could also fulfill this
requirement as available.

• Optionally, an example human-written repair, or fix.
For example, if the defect in question was repaired in
the program’s source code repository, the scenario
may include the patch from that repository. Such
patches assist in qualitative and quantitative post
facto evaluations by providing a point of comparison.

As mentioned earlier, deterministically reproducing
program behavior (both correct and incorrect) on a set
of test cases can be challenging, and our benchmarks thus
focus on deterministic defects. Race conditions and other
nondeterministic defects [44] are certainly important, but
they are outside the scope of this benchmarking effort
and entail a different set of concerns with respect to
evaluation [15]. Limiting the scope to deterministic faults
supports our ability to provide the following guarantees
for each scenario:

• The code compiles correctly in the environment pro-
vided with the commands provided.

• The compiled buggy code passes all elements of the
specification, or all normal test cases, except those that
witness the defect.

• The compiled code demonstrates the defect (i.e., fails
all tests that encode the bug).

• Example repairs included in the benchmark produce
programs that compile and pass all elements of the
specification and fail to witness the defect (i.e., retain
all required functionality while repairing the bug).

• Claims regarding deterministic behavior, e.g., that
the program passes all of the positive test cases, is
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validated with respect to a combination of manual
inspection (where applicable) and at least 100 trial
executions, all of which were observed to produce the
identical result. Any remaining exceptions (limited to
the INTROCLASS set, see below for details) are noted
carefully in the released data. All tests that involve
timing (e.g., tests that include time outs to guard
against infinite loops) were observed to complete
in time over 100 trials on 2013 Amazon EC2 cloud
computing c1.medium instances.

• No part of the specification (e.g., no test case) can
be satisfied by a program with explicitly degenerate
behavior, such as a program that crashes immediately
on launch.

• The order in which two specification elements or
two candidate programs are checked (e.g., in which
order two test cases are run or two candidate repairs
are tested) does not influence the result. That is,
evaluations are stateless, even if the programs are ill-
behaved.

Some of these guarantees merit further explanation. The
specification and witness test cases provide a way to run
a sanity check on a scenario before beginning a repair
effort. It is important to establish that the original program
compiles, demonstrates the defect, and otherwise works
correctly. Some human-written test cases are nondetermin-
istic (e.g., involve random numbers or machine-specific
timeouts). Because our benchmarks assume determinism,
we removed such test cases from consideration. However,
one interesting source of nondeterminism occurred in the
INTROCLASS benchmark set, where in some cases, stu-
dent programmers used uninitialized variables or out-of-
bounds array reads. We verified that in our execution en-
vironment, each of the program versions in INTROCLASS
produced consistent results over at least 10 executions.

A full evaluation of the quality, maintainability [33] or
acceptability [47] of a repair is beyond the scope of this
work. Test cases do not provide the final word on repair
quality, and future work is needed to develop methods
for measuring repair quality beyond test suite behavior.
In the absence of such metrics, however, the final three
properties listed above provide additional confidence in
the quality of a machine-generated repair. They address
corner cases that we have observed in practice, where
repairs that cause a program to pass all test cases are
unlikely to be acceptable to humans. As one example (ex-
plicitly degenerate behavior), many test suites are written
assuming cooperating developers, and do not rule out
truly pathological behavior. For example, a common test
practice runs the program and then searches the output
for a known bad substring; if the substring is absent, the
test passes. This type of test can be trivially passed by
an empty program that returns immediately, which is
rarely the truly desired behavior. Further, many larger
programs use bootstrapping in compilation or testing
(e.g., first automatically generating header files). Unless
care is taken to restore a pristine environment between

test evaluations [80], a low-quality candidate repair (e.g.,
one that creates malformed headers during bootstrapping
or that fails to properly cleanup after a test case) may
cause all subsequent evaluated candidates to appear to
fail, violating the stateless requirement.

Although they do not provide formal guarantees, these
three properties add confidence, especially compared to
previous evaluations (e.g., [49]), that candidate repairs
that pass all specification elements are not degenerate.
With interest in automated program repair methods on
the rise, there is a need for improved methods for partial
correctness specifications that are robust to automatically
generated code. To date, we have not found other types of
these specifications in the types of open-source programs
we investigated for these benchmarks.

3.2 The sets of scenarios
We now describe the set of experimental questions and
analyses that are common in current automatic program
repair research. We used these to determine requirements
for our benchmark sets with the goal of enabling multiple
classes of experiments:

1) Program Generality. Does the repair technique apply
to multiple classes of software programs? Or does it
target or work best on one class of applications (e.g.,
web servers)?

2) Defect Generality. Does the repair technique apply
to multiple classes of software defects, or does it
successfully target one class of bugs (e.g., buffer
overflows)?

3) Longitudinal Studies. Can the repair technique fix
multiple defects in the same program? Does the
repair technique apply to iterative repair scenarios
in which additional defects are reported over time?

4) Success Characteristics. What characterizes defect
scenarios on which the technique succeeds (e.g., high
priority defects, defects of a certain size, mature host
programs, programs of a particular size, etc.)?

5) Controlled Evaluations. How does a technique per-
form on hundreds of defects? How do factors like
test suite coverage influence performance?

6) Human Comparisons and Overall Repair Quality.
How do the repairs produced by the technique com-
pare to repairs produced by humans (e.g., students
or developers)? Are the repairs produced by such
techniques of acceptable quality?

There are several plausible use cases addressed by
automated program repair. For example, some repair
techniques may be designed to address particular defect
or program types; others to be generally applicable; still
others to address iterative, closed-loop modification of
long-running systems. Our benchmarks support evalua-
tion of a variety of use cases and both latitudinal studies
(many types of programs and defects) and longitudinal
studies (many defects in the same program over time). To
admit principled comparisons and identify fruitful areas
of future research, our benchmarks are categorized (e.g.,
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“technique A performs well on defects of type B not on
those of type C”).

It is desirable to include scenarios that are indicative of
the defects encountered by developers in the real-world.
These defects ideally correspond to high-priority bugs
in commonly used programs. An important aspect of
this property is that the defects should be systematically
identified, avoiding cherry-picking of ideal candidates.
The closer such a defect set is to those that appear in
practice, the more results on them will be indicative and
generalizable to real-world applications. This provides
another reason to include developer-provided test cases
as the partial specifications of both correct and incorrect
behavior: these test cases are indicative of the types of
evidence available in practice for evaluating program
functionality.

In addition, automatic repair techniques vary in their
maturity. One dimension along which techniques vary is
scalability. Ideally, a benchmark enables characterization
of a technique’s scaling behavior. We thus include pro-
grams of varying size, some of which will by necessity be
more indicative of real world code than others.

Finally, the scenarios must support controlled and repro-
ducible experiments. We addressed some reproducibility
issues through careful definition of defect scenario (Sec-
tion 3.1); many of the defects require particular library
versions or otherwise cannot easily be reproduced simply
from a program, a source control repository, and a revision
number specification. This motivated us to include virtual
machine images to support experimentation on the larger
MANYBUGS programs. However, the issue of controlled
experimentation applies at the benchmark level as well.
Ideally, the scenarios are selected to allow a researcher to
control for various features of a defect or program ahead
of time as well as in post facto analysis.

3.3 Baseline repair data

Many benchmarks are associated with baseline measure-
ments against which future evaluations can be compared
(e.g., the SPEC benchmarks). We expect future researchers
to expand the dimensions along which automatic repair
techniques are evaluated beyond time, efficiency, or cost.
However, as the state-of-the-art in industrial practice
motivates the use of these metrics as one way of evaluating
success (see Section 2.1), we use them as baseline metrics.
Baselines reduce the experimental burden of comparative
evaluations on other researchers, so long as the future
evaluations use the scenarios as-is (for example, modifying
the test suites would necessitate a full re-execution of the
baseline evaluation). Finally, demonstrated integration of
existing repair methods with the defect scenarios in this
benchmark provides a concrete model for how other tools
can be evaluated using these benchmarks.

For each scenario, we report if GenProg (version 2.2,
with its latest published parameters [50]), AE [75], and
TrpAutoRepair [66] produce a repair, and how long such
a search took, using the parameters and settings from

its most recently-published methodology. GenProg and
TrpAutoRepair were allotted 10 random seeds of up to
12 hours each (totaling 120 hours). AE was allotted one
deterministic trial of up to 60 hours, as per its published
algorithm description. Because the INTROCLASS scenarios
take substantially less time to process, we ran GenProg
and TrpAutoRepair on 20 random seeds instead of 10,
which may lead to stronger statistical results [8]. Although
not indicative of all program repair approaches, GenProg,
AE and TrpAutoRepair represent a family of generate-
and-validate repair architectures based around testing,
and GenProg has been used as a comparison baseline in
several evaluations (e.g., [47], [58], [67], [66]).

4 THE MANYBUGS BENCHMARK

The MANYBUGS benchmark consists of 185 defect scenar-
ios, constructed according to the requirements described in
Section 3.1. The benchmark is designed to allow indicative
evaluations whose results generalize to industrial bug-
fixing practice, while allowing qualitative discussions of
the types of programs and defects on which a particular
technique is successful. Because we generate the scenarios
systematically over the history of real-world programs, the
set is less suitable for controlled experimentation, in which
factors like test suite size or initial program quality are
varied in a principled way. The INTROCLASS benchmark,
described in Section 5, is intended to support those types
of experiments. It is also comprised of small programs,
rendering it more suitable for evaluating novel methods
that may not immediately scale to large legacy programs.

This section discusses the methodology we used to
construct the MANYBUGS benchmark (Section 4.1), pro-
viding details about each of the benchmark programs
(Section 4.2), characterizing the defect scenarios across
several dimensions (Section 4.3), and presenting a high-
level outline of the individual scenarios (Section 4.4).

The MANYBUGS benchmark may evolve. This section
and the results in Section 6 describe MANYBUGS v1.0.

4.1 Methodology

Our goal in constructing the MANYBUGS benchmark was
to produce an unbiased set of programs and defects
that is indicative of “real-world usage.”3 We therefore
sought subject programs that contained sufficient C source
code, and included a version control system, a test suite
of reasonable size, and a set of suitable subject defects.
We focused on C because, despite its age, it continues
to be the most popular programming language in the
world [65], and because a large proportion of the existing
research projects in automatic repair focus on bugs in C
programs. For the purposes of reproducibility, we adopted
only programs that could run without modification in a
common denominator cloud computing virtualization (see

3. Some of the material in this section was previously presented in [49].
We have adapted and contextualized the text for use here; some of it
remains unchanged.
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Section 3.1). This limited us to programs amenable to such
environments.

At a high level, to identify a set of subject defects that
were both reproducible and important, we searched sys-
tematically through the program’s source history, looking
for revisions at which program behavior on the test suite
changes. Such a scenario corresponds either to a human-
written repair for the bug corresponding to the failing test
case, or a human-committed regression. This approach
succeeds even in projects without explicit bug-test links
(which can lead to bias in bug datasets [11]), and ensures
that benchmark defects are sufficiently important to merit
a human fix and to affect the program’s test suite.

A candidate subject program is a software project
containing at least 50,000 lines of C code, 10 viable test
cases, and 300 versions in a revision control system. We
acknowledge that these cutoffs are arbitrary rules of
thumb; we selected them in the interest of considering
systems of non-trivial size and development maturity.
We consider all viable versions of a program, defined as
a version that checks out and builds unmodified on 32-
bit Fedora 13 Linux.4 A program builds if it produces its
primary executable, regardless of the exit status of make.

Testing methodologies vary between projects, to the
point that projects may differ on the definition of what
constitutes an individual test case. For example, some
program test suites are divided by area of functionality
tested, with each area breaking down into individualized
test suites. Other programs do not delineate their test cases
in this way. We define a test case to be the smallest atomic
testing unit for which individual pass or fail information
is available. If a program has 10 “major areas” that each
contain 5 “minor tests” and each “minor test” can pass or
fail, we say that it has 50 test cases. A viable test case is a test
that is reproducible, non-interactive, and deterministic in
the cloud environment (over at least 100 trials).

We write testsuite(i) to denote the set of viable test
cases passed by viable version i of a program. We use all
available viable tests, even those added after the version
under consideration, under the assumption that the most
recent set of tests correspond to the “most correct” known
specification of the program. We exclude programs with
test suites that take longer than one hour to complete in
the cloud environment.

We say that a testable bug exists between viable versions
i and j of a subject program when:

1) testsuite(i) ( testsuite(j) and
2) there is no i′ > i or j′ < j with the testsuite(j) −

testsuite(i) = testsuite(j′)− testsuite(i′) and

4. 32-bit Fedora 13 Linux served as a lowest common denominator OS
available on the EC2 cloud computing framework as of May, 2011, when
we began developing these benchmarks. In the time since, new versions
of the operating system have been released, and 64-bit architectures
have increased in common usage. Researchers may legitimately prefer
to evaluate their techniques in a more modern environment. This is
indicative of the tension between keeping a benchmark set current and
allowing reproducibility of previous results. We attempt to mitigate this
tension with two specially constructed virtual machine images, discussed
in Section 4.4.

3) the only source files changed by developers to reach
version j were .c, .h, .y or .l

The second condition requires a minimal |i − j|. The set
of specification tests (i.e., that encode required behavior)
is defined as testsuite(i) ∩ testsuite(j). The specification
tests must pass both versions. The witness (i.e., the test
cases that demonstrate the bug) is testsuite(j)−testsuite(i).
Note that the two sets of tests are disjoint. Note also that
the witness can consist of more than one test case, and
that we treat all test cases in the witness as corresponding
to the same defect (to avoid bias possibly introduced by
manually categorizing the failed test cases). Researchers
using this dataset could treat scenarios with multiple
test cases in the witness either jointly or individually, as
appropriate for their application.

Given a viable candidate subject program, its most
recent test suite, and a range of viable revisions, we
construct a set of testable bugs by considering each viable
version i and finding the minimal viable version j, if
any, such that there is a testable bug between i and j.
We considered all viable revisions appearing before our
start date in May, 2011 for all programs besides php and
valgrind; these latter programs include defects appearing
before July 2013 as a potential source of testable bugs.
We did not cap the number of defects per program to a
percentage of the total (as in the initial iteration of this
dataset [49]), because we wanted the dataset to support
both latitudinal and longitudinal studies (that is, studies
of repair success across many programs, and studies of
sequential repairs in one program). The latter benefits from
a set that contains at least one program with many defects
(such as php in our dataset). However, we expect that
latitudinal studies may benefit from limiting the number
of defects from one program (e.g., to under 50% of the
total set) to avoid having it dominate or skew the results.

Given these criteria, we canvassed the following
sources:

1) the top 20 C programs on popular open-source web
sites sourceforge.net, github.com, and Google code,

2) the largest 20 non-kernel Fedora source packages,
and

3) programs in other repair papers [32], [52] or known
to the authors to have large test suites.

Many otherwise-popular projects failed to meet all of
our criteria. Many open-source programs have nonexistent
or weak test suites; non-automated testing, such as for
GUIs; or are difficult to modularize, build and reproduce
on our architecture (e.g., eclipse, openoffice and firefox

had test harnesses that we were unable to modularize and
script; we were unable to find publicly available test suites
for ghostscript and handbrake). For several programs, we
were unable to identify any viable defects according to our
definition (e.g., gnucash, openssl). Some projects (e.g., bash,
cvs, openssh) had inaccessible or unusably small version
control histories. Other projects were ruled out by our 1-
hour test suite time bound (e.g., gcc, glibc, subversion).
These projects typically had disk-intensive test suites, and

sourceforge.net
github.com
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MANYBUGS benchmark

test suite
program kLOC defects count format median LOC stmt coverage description

fbc 97 3 483 BASIC 35 80% legacy language compiler
gmp 145 2 146 C 117 64% multi-precision math library
gzip 491 5 12 Bash 25 34% data compression utility
libtiff 77 24 78 Bash/C 7 25% image processing library
lighttpd 62 9 295 Perl 106 62% web server
php 1,099 104 8,471 phpt 35 80% web programming language
python 407 15 355 Python 203 67% general-purpose language
valgrind 793 15 565 vgtest/C 40 62% dynamic debugging tool
wireshark 2,814 8 63 Bash — 44% network packet analyzer

total 5,985 185 10,468

Fig. 1. The MANYBUGS subject C programs, test suites, and historical defects: MANYBUGS defects are defined as
deviations in program behavior as compared to the next viable version in the history. MANYBUGS tests were taken
from the most recent version available from the specified start date. This typically corresponds to test case failures
fixed by developers in subsequent versions. The test suite columns summarize characteristics of the test suites, further
explained in text. Note that gzip as configured from its repository differs from that which is released in source packages;
the latter includes approximately 50kLOC, depending on the release. The php defects are intended to allow studies
of iterative repair, or many sequential repairs to one program; an evaluation that investigates generality across many
different types of programs may restrict the number of php defects considered (e.g., to 45, as we did in previous work).

would arbitrarily slow in the EC2 environment; we antici-
pate that advancement in virtualization infrastructure will
mitigate this limitation, eventually allowing the inclusion
of such programs. Earlier versions of certain programs
(e.g., gmp) require incompatible versions of automake and
libtool. Despite these efforts, we acknowledge that our
benchmark set is not exhaustive and will welcome new
additions in the future. By formalizing the methodology
for generating and reproducing this type of experimental
scenario, we hope to encourage community participation
and consensus in extending and using the scenarios.

4.2 Constituent programs
Figure 1 summarizes the programs in the MANYBUGS
benchmark. This section provides details on the programs
themselves, to aid in understanding the types of programs
in the dataset and to substantiate our claim that the
benchmarks support experiments that will generalize to
real-world practice. Section 4.3 categorizes and describes
the defects.

The MANYBUGS benchmark consists of nine well-
established open-source programs with mature codebases.
These programs are found on many machines running
Linux or Mac OSX and are common in the pantheon of
open-source software. The benchmark consists of pro-
grams developed by both large and small teams. In total,
the programs in the benchmark are the result of 285,974
commits made by 1,208 contributors writing 7,745,937
lines of code [12]. The programs in the benchmark are:
1. fbc (FreeBASIC Compiler)5 is a free, open-source multi-

platform (though limited to 32-bit architectures as

5. http://www.sourceforge.net/projects/fbc/

of June 2014) BASIC compiler whose codebase covers
a large number of common C programming idioms
including pointers, unsigned data types, and inline
functions. The compiler itself provides a pre-processor
and many libraries supporting various compiler ex-
tensions. fbc has been rated close in speed with other
mainstream compilers such as gcc.6

2. gmp7 is a free open-source library supporting arbitrary
precision arithmetic. The library operates on signed
integers as well as rational and floating-point numbers.
gmp emphasizes speed and efficiency, and is intended to
target and support cryptography, security applications,
and research code.

3. gzip (GNU zip)8 is a data compression utility designed
to be a free, superior alternative to compress.

4. libtiff9 is a free, open-source library for reading, writ-
ing, and performing simple manipulations of Tagged
Image File Format (TIFF) graphics files. libtiff works
on 32- and 64-bit architectures on a variety of platforms.

5. lighttpd10 is a lightweight web server optimized for
high-performance environments. It is designed to be
fast and efficient with a small memory footprint. It is
used by YouTube and Wikimedia, among others. Beyond
efficiency concerns, the lighttpd project prioritizes
compliance to standards, security, and flexibility.

6. php (PHP: Hypertext Preprocessor)11 is a server-side

6. http://www.freebasic.net/
7. http://www.gmplib.org
8. http://www.gnu.org/software/gzip/
9. http://www.libtiff.org/
10. http://www.lighttpd.net/
11. http://www.php.net/

http://www.gmplib.org
http://www.gnu.org/software/gzip/
http://www.libtiff.org/
http://www.lighttpd.net/
http://www.php.net/
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scripting language designed for web development. The
php program in this benchmark is the interpreter for
the language, which is largely written in C, with a
large testing framework and portions of its compilation
phase reliant on php itself. The defect scenarios in
MANYBUGS are restricted to C code, but make use of
the bootstrapped testing and compilation framework;
the phpt language noted in the test suite column of
Figure 1 refers to a declarative test format used for
php testing.12 php was not originally intended to be
a new programming language, but is now used as
such, and has become a critical component of the web
(used by Facebook, among others). The php language
grew organically, leading to some inconsistencies in
the language; the development discipline at the project
has resulted in a large number of regression tests and a
comprehensive bug and feature database.

7. python13 is a widely used general-purpose, high-level
programming language. The benchmark program in
MANYBUGS is its interpreter, which is written in both
C and python. The scenarios in the benchmark are
restricted to C code.14 The python language emphasizes
code readability and extensibility, supporting multi-
ple paradigms such as object-oriented and structured
programming among others [77].

8. valgrind15 is a GPL-licensed programming tool for
memory debugging, memory leak detection, and profil-
ing. It can be used to build new dynamic analysis tools.
Although valgrind was originally designed to be a free
memory debugging tool for Linux on x86, it has since
evolved to become a generic framework for creating
dynamic analysis tools such as checkers and profilers.

9. wireshark16 (originally named Ethereal) is a free net-
work packet analyzer. It is used for network trou-
bleshooting, analysis, software and communications
protocol development, and education.

The testing methodology varies considerably between
projects. The test suite columns in Figure 1 provides the
number of test cases in each suite, the dominant language
used to write those tests, the median non-blank lines of
code per test case, and the statement coverage for the
modules in which the defects under repair are found. We
exclude common configuration or initialization scripts,
which each project’s testing harness includes, as well as the
driver code that execute the tests for a given benchmark,
such as the check target in a Makefile. We also exclude
median lines of code for wireshark because the entire test

12. php’s use of the php language for the testing framework presents
a particular challenge in constructing reproducible, idempotent testing
scenarios, since test setup, execution, and tear down and cleanup rely on
the interpreter working at least in part as expected. The default scenarios
as presented here, maintain the default testing framework to remain
consistent with the developer intent in its design. We have otherwise
worked around the resultant limitations to the best of our ability.

13. http://www.python.org
14. As with php, python’s build system includes substantial boot-

strapping in its compiler, which complicated the construction of repro-
ducible scenarios.

15. http://valgrind.org/
16. http://www.wireshark.org/about.html

suite is included in one large, consolidated bash script
that calls the underlying utilities in turn. The language
compilers/interpreters (fbc, php, and python) construct
tests out of fragments of the language in question; php
additionally makes use of a hand-rolled testing framework.
valgrind also includes its own test framework. vgtest files
describe the test plans, which typically involve analyzing
a particular C file. lighttpd uses the Test::More Perl test
framework. gmp and libtiff largely construct tests out of
C programs that use the library in question.

Test suite size and defective module coverage also vary
significantly between the programs. Coverage in particular
appears to vary especially by testing approach. Notably,
wireshark, libtiff, and gzip’s test suites are probably
best characterized as system tests, in that each test calls
stand alone programs in various sequences (e.g., the base
libtiff library consists of many separate utilities). The
other programs appear to have a more modular program
construction and testing methodology; this is especially
true of php.

4.3 Categorization
As discussed in Section 3.2, one of our goals in designing
these objects of study is to enable qualitative discussion
of the success characteristics of various techniques. To
this end, beyond characterizing the programs by size and
type (described in Section 4.2), we manually categorized
each defect in the MANYBUGS set to provide more in-
formation about the defects. We expect that results will
lend themselves to statements such as “New technique
X is well-suited to addressing incorrect output, but does
not handle segmentation faults well.” We are releasing
this categorization with the benchmark scenarios, and
anticipate adding new features to the categories as they are
identified (either in our experiments or the experiments of
others as communicated to us). We provide a high-level
description of the categories and categorization process
here, but elide features in the interest of brevity; full details
are available with the released data and scenarios.

We manually categorized the defects by first searching
for developer annotations surrounding the defect. We
analyzed bug reports, available in 60 percent of the sce-
narios, for relevant keywords. We also inspected commit
comments in the fix revision, the modification in the
human patch, and the witness test case files for insight
about the change or comments describing the behavior or
feature under test.

The four most common defect categories were:
• 70 instances of incorrect behavior or incorrect output
• 27 segmentation faults
• 20 fatal errors (non-segmentation fault crashes of

otherwise unspecified type)
• 12 instances of feature additions
There is some overlap in these categories. For example,

crashing errors can be related to segmentation faults,
buffer overruns, integer overflows, or a number of other
possible causes. Our goal was to label the scenarios as

http://www.python.org
http://valgrind.org/
http://www.wireshark.org/about.html
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informatively as possible for those attempting to either
slice the defect set according to their experimental needs,
or categorize their results based on defect type. We tried
to be as specific as possible with our labeling scheme,
and included multiple labels when supported by our
investigation. For example, if a particular defect caused a
segmentation fault because of a buffer overflow, we label
the scenario with both “segmentation fault” and “buffer
overflow.” We anticipate adding more labels as they are
identified by ourselves or other researchers.

We define “incorrect behavior or output” as any instance
of the program printing unexpected values or storing
unexpected values in memory. For example, PHP bug
#61095 is a hexadecimal bug in which 0x00+ 2 incorrectly
sums to 4 instead of 2. Some cases of incorrect behavior
apply specifically to exceptional situations, such as in
lighttpd revision #2259, which addressed a defect (bug
#1440) in the secdownload module that resulted in the error
code 410 (“Gone”) being returned instead of the appro-
priate 408 code (“Timeout”). “Feature additions” are bugs
that humans addressed by, for example, adding support
for a new type definition, adding optional variables to
a function, or adding new behaviors to a module. For
example, commit # 5252 in the fbc compiler added support
for octal numbers formatted with &. . . (where previously
just &O was supported). Feature requests are often tracked
in the same repository as regular defects, and in several
cases we were able to link such scenarios to reports.

We classified defects further along dimensions such as
assigned bug priority (when available), whether or not the
defect is security related, and wall clock time between
bug revision and fix revision. We manually evaluated
each developer-provided patch, and note whenever vari-
able types are changed or conditionals are added in the
modified code. Finally, we used the diff between the
bug revision and fix revision to calculate the number of
files and the number of lines edited. We elide summary
statistics for brevity, but have made this information
available as part of the dataset release.

We hope that these categories and annotations will
support the qualitative analyses of program repair tech-
niques. For instance, repair techniques that focus on fixing
segmentation faults can report results for the subset of
defects corresponding to segfaults and possibly other fatal
errors. Similarly, repair techniques that limit the scope of
their repairs to modifying conditionals can report results
for the subset of defects in which the developers modified
conditionals in their patch.

4.4 Environment and scenario structure
The MANYBUGS scenarios, categorization data, and base-
line results and output logs, are available for download:
see http://repairbenchmarks.cs.umass.edu/. We give a
high-level view of the scenario structure here and provide
detailed READMEs, including the categorization details
discussed in Section 4.3, with the dataset.

Each MANYBUGS scenario is named following a con-
vention indicating the software system name and revision

identifiers in question.17 Each scenario archive includes at
least the following components:
• The program source code tree, checked out and

configured to build at the defect revision.
• A text file listing the modules or source code impli-

cated in the change (simplifying the slicing of the
system’s functionality to just the source under repair
by the humans, if relevant).

• A test script that takes as arguments a test name and
the name of a compiled executable to test. The test
names distinguish between initially passing test cases
and the witnesses of the bug, and are indexed by
number.

• A compile script that takes the name of an executable,
corresponding to a folder in which the source code
for a program variant is placed.

• A folder containing the version of the implicated files
committed at the human-written fix revision.

• A folder containing the patches produced by diff

corresponding to that human-written change.
• A folder containing the preprocessed C code corre-

sponding to the files implicated in the change (for
ease of parsing).

• Sample configuration files for GenProg v2.2, for
demonstration and reproduction. These configuration
files, with additional arguments, may also be used
to initialize AE and replicate the TrpAutoRepair
experiments.

• A bug-info folder containing data on the defect and
tests in the scenario.

Many scenarios include additional support files, primarily
intended to support compilation and testing of particular
software systems.

We provide two sets of virtual machine images on
which we intend the scenarios to be evaluated. While it
is possible that the defects at the associated revisions are
reproducible in other environments (including in other
operating systems), we only make claims and provide
explicit reproduction support for the environment we
provide. Each set includes an image that can be directly
imported into VirtualBox,18 a free and open-source desk-
top virtualization software. As of the writing of this article,
this format is interoperable with and importable to other
popular virtualization options, such as VMWare.19 The
other image is a raw bit-wise dump of the image, which
can be imported (with some conversion) into other cloud
or virtual environments. We have also created and made
public Amazon Machine Images (AMI) that replicate these
machines in the EC2 environment. See the documentation
associated with the download for details.

The first set of virtual machine images reproduces the
32-bit Fedora 13 environment first used in the evaluation
in [49] and to produce the baseline results described below.

17. For software associated with git repositories, we include the date
of the fix commit in the scenario name to impose an easily-identifiable
temporal ordering on the defects in each program set.

18. http://www.virtualbox.org
19. http://www.vmware.com

http://repairbenchmarks.cs.umass.edu/
http://www.virtualbox.org
http://www.vmware.com
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This represents a reasonable lowest-common denominator
for use on Amazon’s EC2 cloud computing environment.
These images allow direct reproduction of and comparison
to previous results (including the baseline results in this
article) and trivially enable execution and analysis of the
defects that require 32-bit architectures (especially those
in fbc, which, despite our best efforts and the claims of
the associated documentation, we have been consistently
unable to compile in a 64-bit environment).

The second set of images reproduces a 64-bit Fedora 20
environment, with a chroot jail that replicates the 32-bit
Fedora environment. Not all the programs and defects
in the MANYBUGS set can be compiled and run directly
in a 64-bit environment (though most can). The chroot

jail allows tools and techniques that require more recent
library versions or 64-bit environments to be compiled
outside the jail and executed within it on defects that require
the 32-bit environment. Instructions are included with the
README associated with the virtual machine images.

5 THE INTROCLASS BENCHMARK

The INTROCLASS benchmark consists of 998 defect sce-
narios, and is designed for evaluations that can identify
the factors that affect the success of repair techniques.
The programs are associated with carefully designed test
suites that yield either high specification coverage or
100% branch coverage on a reference implementation.
These suites make this benchmark particularly suitable
for evaluating the effects of test suite quality, coverage,
and provenance on the repair. The varied severity of the
defects, in terms of the number of test cases they cause the
program to fail, makes these scenarios particularly suitable
for evaluating the effect of initial program quality on repair.
As this benchmark is composed of small programs, it can
also be used to evaluate early-stage techniques that do not
yet scale to programs of larger size or complexity.

This section discusses the methodology we used to
construct the INTROCLASS benchmark (Section 5.1), the
process for creating the two test suites for each benchmark
program (Section 5.2), the methodology for using the test
suites to identify the defects (Section 5.3), the details of
each of the benchmark programs (Section 5.4), and the
instructions on how to download, run, and otherwise use
the programs (Section 5.6).

The INTROCLASS benchmark may evolve. This section
and the results in Section 6 describe MANYBUGS v1.0.

5.1 Methodology
The INTROCLASS dataset is drawn from an introductory
C programming class (ECS 30, at UC Davis) with an
enrollment of about 200 students. The use of this dataset
for research was approved by the UC Davis IRB (in-
tramural human studies review committee), given that
student identities are kept confidential. To prevent identity
recovery, students’ names in the dataset were salted with
a random number and securely hashed, and all code
comments were removed.

INTROCLASS benchmark

program LOC tests defects description
bb wb bb wb

checksum 13 6 10 29 49 checksum of a string
digits 15 6 10 91 172 digits of a number
grade 19 9 9 226 224 grade from score
median 24 7 6 168 152 median of 3 numbers
smallest 20 8 8 155 118 min of 4 numbers
syllables 23 6 10 109 130 count vowels

total 114 42 53 778? 845?

?The intersection of the 778 black-box and 845 white-box defects
is 998 defects.

Fig. 2. The six INTROCLASS benchmark subject programs.
The black-box (bb) tests are instructor-written specification-
based tests, and the white-box (wb) tests are generated
with KLEE to give 100% branch coverage on the instructor-
written reference implementation. The 998 unique defects
are student-submitted versions that fail at least one, and
pass at least one of the tests.

The programming assignments in ECS 30 require stu-
dents to write C programs that satisfy detailed specifica-
tions provided by the instructor. For each assignment, up
to the deadline, the students may submit their code at any
time, and as many times as they want; there is no penalty
for multiple submissions. Each time they submit, they
receive a notification about how many tests their program
passed, but they see neither the test inputs nor the test
outputs. The students then may rethink the specification,
their implementations, and resubmit. The students also
have access to an oracle, which they may query with inputs
and receive the expected output. A portion of the grade is
proportional to the number of tests the program passes.

For each of the six assignments (see Figure 2), each time
the students submit a potential solution, this solution is
recorded in a git repository unique to that student and
that assignment. The INTROCLASS benchmark consists
of 998 submitted solutions, each of which fails at least
one and passes at least one black-box test or fails at least
one and passes at least one white-box test (Section 5.2
describes the test suites, and Section 5.3 describes the
defects.) Further, the benchmark includes the final student
solutions, many (but not all) of which pass all the tests.

5.2 Test suites
For each benchmark program, we developed two test
suites: a black-box test suite and a white-box test suite.
These test suites are intended to be different while each
covering the program’s behavior.

The black-box test suite is based solely on the program
specification and problem description. The course instruc-
tor constructed this test suite manually, using equiva-
lence partitioning: separating the input space into several
equivalent partitions, based on the specification, and
selecting one input from each category. For example, given
a program that computes the median of three numbers,
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the black-box test suite contains tests with the median as
the first, second, and third input, and also tests where two
and all three inputs are equal.

The white-box test suite is based on the oracle program
for each assignment, whose output is by definition cor-
rect for the assignment in question. The white-box test
suite achieves branch coverage on the oracle. Whenever
possible, we create the white-box test suite using KLEE,
a symbolic execution tool that automatically generates
tests that achieve high coverage [18]. When KLEE fails
to find a covering test suite (typically because of the lack
of a suitable constraint solver), we construct a test suite
manually to achieve branch coverage on the oracle.

The black-box and white-box test suites are developed
independently and provide two separate descriptions of
the desired program behavior. Because students can query
how well their submissions do on the black-box tests
(without learning the tests themselves), they can use the
results of these tests to guide their development.

5.3 Defects

We evaluated the student-submitted program versions
(corresponding to potential assignment solutions) against
each of the two test suites. We identify subject defects by
considering every version of every program that passes
at least one test and fails at least one test, for each test
suite. We exclude versions that fail all tests because of our
requirement that benchmark scenarios conform at least
in part to a (partial) correctness specification. Program
versions that fall all tests in a test suite are typically
so malformed that they are too different from a correct
solution to be considered a defect.

As Figure 2 summarizes, we identified a total of 778
defects using the black-box test suite, and 845 defects using
the white-box test suite. The intersection of these two sets
is 998 defects. Of course, some students may have made
similar mistakes and introduced similar, or even identical
bugs in their code. Because the INTROCLASS benchmark
is representative of both the type and the frequency of
bugs made by novice developers, we did not remove
duplicates from our dataset; however, some uses of the
dataset may require first identifying and then removing
these duplicates.

5.4 Constituent programs

Figure 2 summarizes the programs in the INTROCLASS
benchmark. This section provides details on the programs
themselves, to help users of the benchmark understand
the types of programs available for their evaluation.

The INTROCLASS benchmark consists of six small C
programs. These programs can be compiled by gcc with
default settings. The programs are:
1. checksum takes as input a char* single-line string,

computes the sum of the integer codes of the characters
in the string, and outputs the char that corresponds
to that sum modulo 64 plus the integer code for the

space character. The black-box test suite includes inputs
strings of all lower-case letters, upper-case letters,
numbers, special characters, and combinations of those
types of characters.

2. digits takes as input an int and prints to the screen
each base-10 digit appearing in that input, from the
least significant to the most significant, in the order
in which they appear. Each digit is to be printed on a
separate line. The black-box tests include positive and
negative inputs, inputs with single and with multiple
digits, and inputs consisting of a repeated digit.

3. grade takes as input five double scores. The first four
represent the thresholds for A, B, C, and D grades,
respectively. The last represent a student grade. The
output is the string “Student has a X grade\n”,
with “X” replaced by the grade based on the thresholds.
The black-box test suite includes a student grade that
falls in each of the ranges defined by the thresholds,
outside of the ranges, and on each boundary.

4. median takes as input three ints and computes their
median. The students are asked to use as few com-
parisons as possible, and are told that it is possible to
produce a correct program that performs only three
comparisons. The black-box test suite includes sets of
numbers such that each of the positions is the median,
and sets of numbers with two and with three identical
numbers.

5. smallest takes as input four ints, computes the small-
est, and prints to the screen “X is the smallest”
where “X” is replaced by the smallest int. The students
are asked to use as few comparisons as possible. The
black-box test suite includes orderings of the four
inputs such that the minimum falls in each of the
positions, positive and negative numbers, and sets that
include three or four identical integers.

6. syllables takes as input a char* string of 20 or fewer
characters and counts the number of vowels (a, e, i, o, u,
y) in the string. The program should print to the screen
“The number of syllables is X.”, where “X” is
replaced by the number of vowels. The black-box test
suite includes strings with spaces, special characters, as
well as zero and one vowel.

5.5 Categorization

As with the MANYBUGS suite, we categorized the defects
in the INTROCLASS suite. For each of the 998 code versions
from Figure 2, we ran each test and observed the code’s
behavior on that test. There were a total of 8,884 test
failures. The overwhelming majority of the failures were
caused by incorrect output. The causes of the failures were:

• 8,469 instances of incorrect output
• 85 timeouts (likely infinite loops)
• 76 segmentation faults
• 254 other (non-segmentation fault) exit status errors

The metadata file for each defect (see Section 5.6 and
Figure 3) includes the failure cause for each failing test.
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checksum
tests
blackbox
1.in
1.out
2.in
2.out
. . .

whitebox
1.in
1.out
2.in
2.out
. . .

checksum.c (instructor-written solution)
checksum (compiled instructor-written solution)

studentIDhex_1
commitID_1
blackbox_test.sh
whitebox_test.sh
checksum.c
ae-bb-01.log
ae-wb-01.log
gp-bb-01.log
. . .
gp-bb-20.log
gp-wb-01.log
. . .
gp-wb-20.log

trp-bb-01.log
. . .
trp-bb-20.log
trp-wb-01.log
. . .
trp-wb-20.log
metadata.json
Makefile

commitID_2
. . .

commitID. . .
Makefile

studentIDhex_2
. . .

studentIDhex. . .
Makefile

digits
. . .

grade
. . .

median
. . .

smallest
. . .

syllables
. . .

Makefile
README
defect-classification.json

Fig. 3. File structure of the INTROCLASS benchmark. The hex labels are anonymized student id hashes and the
metadata.json file in each program version directory contains metadata on the tests that version passes and fails, the
test execution outputs, and if the version is nondeterministic. Each commitID directory contains one defect; the largest
commitID is the final student-submitted version, which usually passes all tests, but sometimes is a defect. The .log files
are the execution logs of the repair tools. Due to nondeterminism, the repair tools failed to run on some defects (e.g.,
because a test expected to fail sometimes passed), so no .log are reported for tool executions on those defects. The
final student-submitted versions that pass all tests do not have .log files they are not defects.

5.6 Environment and scenario structure

The INTROCLASS download package contains the
instructor-written (correct) programs, the defects, the
white- and black-box test suites, execution infrastructure
test scripts, makefiles for compiling the programs, and
program metadata.

Figure 3 describes the structure of the downloadable
INTROCLASS package. Each defect’s metadata file lists
which tests that program version passes and fails, and
contains the version’s outputs on each of the test cases.
Finally, each defect contains two shell test scripts (one for
white-box testing and one for black-box testing), with an
interface analogous to the one described in Section 4.4. To
build the INTROCLASS dataset, run GNU make in the top-
level directory, or in any subdirectory (to build a subset of
the dataset).

6 EMPIRICAL RESULTS

In this section, we report the results of running GenProg
v2.2, TrpAutoRepair, and AE v3.0 on all of our defect sce-
narios (as discussed in Section 3.3). We remind the reader

that the purpose of this article is not to evaluate GenProg,
TrpAutoRepair, and AE or any other particular repair
technique. Other work, e.g., [17], [49], [71] has used these
datasets or parts of these datasets to evaluate techniques.
Instead, our goal is to provide a useful benchmark suite for
the subfield of automated program repair. Thus we neither
examine nor discuss the results in detail, but instead
provide them here to save researchers time, money, and
compute resources; to admit rapid comparisons against
previous techniques when new tools are developed; and to
demonstrate by example the use of these benchmark suites
for the purposes of evaluating state-of-the-art techniques
in automatic repair. Note that these baseline results are
suitable for comparison only when the programs, test
suites, and environments are kept the same; reruns will
still be necessary otherwise. We have released these results
with the dataset. We anticipate that they could serve to
highlight categories of programs and defects that are not
well-handled by the current state of the art, focusing future
research efforts.
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GenProg TrpAutoRepair AE
Defects Time Fitness Defects Time Fitness Defects Time Fitness

Program repaired (min) evals repaired (min) evals repaired (min) evals

fbc 1/3 133 79.0 0/3 — — 1/3 7 1.7
gmp 1/2 13 7.2 1/2 18 2.4 1/2 739 63.3
gzip 1/5 240 130.7 1/5 107 56.7 2/5 84 1432
libtiff 17/24 27 20.8 17/24 16 2.9 17/24 24 3.0
lighttpd 5/9 79 44.1 4/9 33 14.9 4/9 22 11.2
php 54/104 181 5.2 56/104 180 1.1 53/104 441 1.1
python 2/15 110 12.9 2/15 144 1.4 3/15 529 7.6
valgrind 4/15 193 24.0 4/15 133 1.5 0/15 — —
wireshark 5/8 140 14.3 5/8 44 2.6 5/8 574 66.5

Fig. 4. MANYBUGS: Baseline results of running GenProg v2.2, TrpAutoRepair, and AE v3.0 on the 185 defects of the
MANYBUGS benchmark. For each of the repair techniques, we report the number of defects repaired per program;
the average time to repair in minutes (GenProg and TrpAutoRepair were run on 10 seeds per scenario, with each run
provided a 12-hour timeout; AE is run once per scenario, with a 60-hour timeout); and the number of fitness evaluations
to a repair, which serves as a compute- and scenario-independent measure of repair time (typically dominated by test
suite execution time and thus varies by test suite size). Complete results, including individual log files for each defect,
are available for download with the dataset.

6.1 Experimental setup

These baseline results are based on experimental parame-
ters using the latest published methodology for each algo-
rithm. We used the off-the-shelf GenProg v2.2 and AE v3.0,
from the GenProg website (http://genprog.cs.virginia.
edu). TrpAutoRepair [66] is described by its authors
as extending the publicly available GenProg codebase,
although the novel features described for TrpAutoRepair
(notably the test suite prioritization technique) were inde-
pendently developed in AE [75]. Since the TrpAutoRepair
prototype is not publicly available, we reimplemented the
TrpAutoRepair algorithm based on its publication [66].

Because both GenProg and TrpAutoRepair are random-
ized algorithms, each effort to repair a given scenario
consists of a number of random trials run in parallel. For
MANYBUGS, we performed 10 such trials (following their
published descriptions); for INTROCLASS, which is much
less compute-intensive to evaluate, we performed 20 to
admit additional statistical confidence. For GenProg and
TrpAutoRepair, each MANYBUGS trial was given up to
12 hours or 10 generations, whichever came first, again
following published experimental methodologies; each
INTROCLASS trial was given 100 generations. Timing
results are reported for the first of the trials to succeed for
each scenario. Full GenProg parameters are provided with
the debug logs of these results. As high-level guidance and
following reported values for these algorithms, we set the
population size to be 40, mutated each individual exactly
once each generation, performed tournament selection,
and applied crossover once to each set of parents. Because
of the compute costs involved in fitness evaluation on
large test suites, for MANYBUGS, the fitness function
samples 10% of the passing test suite for all benchmarks
for the evaluation of intermediate candidate solutions; if
a solution passes the full 10% of the test suite as well

as the initially failing test cases (encoding the defect
under repair), the variant is tested on the remaining 90%
to determine if it represents a candidate solution. We
did not sample for INTROCLASS. For both datasets, we
use the fault space, mutation operation weighting, and
other choices described in the most recent large study of
GenProg effectiveness [50].

TrpAutoRepair uses random search and a test suite
selection strategy and is thus not generational. In keeping
with its published parameters, each trial consisted of
400 random individuals, and we otherwise matched the
random weighting parameters provided to GenProg. Test
suite sampling does not apply to TrpAutoRepair.

Because AE is not randomized, each effort to repair a
given defect scenario consists of a single trial with the
edit distance k set to 1; AE has no notion of population or
fitness. Each AE trial was given up to 60 hours to complete
for MANYBUGS, and 25 minutes for INTROCLASS.

For the MANYBUGS experiments, we used Amazon’s
EC2 cloud computing infrastructure with our Fedora 13
virtual machine image. Each trial was given a high-cpu
medium (c1.medium) instance with two cores and 1.7
GB of memory. 20 For the INTROCLASS experiments, we
used Ubuntu 13.10 double-extra large high CPU instances
(c3.2xlarge) with eight cores and 15 GB of memory. 21

6.2 Baseline results on MANYBUGS and INTROCLASS

Figure 4 shows the results of executing GenProg v2.2,
TrpAutoRepair, and AE v3.0 on the 185 defects in the
MANYBUGS dataset. (The unified results reported here dif-
fer slightly from previously published results for php and
wireshark [49] due to the higher standards in this work for
reproducible, deterministic test cases.) Figure 5 shows the

20. https://aws.amazon.com/ec2/previous-generation/
21. http://aws.amazon.com/ec2/instance-types/

http://genprog.cs.virginia.edu
http://genprog.cs.virginia.edu
https://aws.amazon.com/ec2/previous-generation/
http://aws.amazon.com/ec2/instance-types/
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GenProg TrpAutoRepair AE
Defects Time Fitness Defects Time Fitness Defects Time Fitness

Program repaired (sec) evals repaired (sec) evals repaired (sec) evals

white-box-based defects

checksum 3/49 343 132 1/49 10 5 1/49 4 1
digits 99/172 191 102 46/172 32 13 50/172 11 3
grade 3/224 152 160 2/224 26 23 2/224 25 25
median 63/152 107 114 36/152 19 25 16/152 4 2
smallest 118/118 23 23 118/118 15 11 92/118 4 2
syllables 6/130 284 157 9/130 36 56 5/130 9 6

black-box-based defects

checksum 8/29 517 307 0/29 — — 0/29 — —
digits 30/91 162 77 19/91 24 15 17/91 6 6
grade 2/226 141 156 2/226 30 27 2/226 24 25
median 108/168 44 59 93/168 20 20 58/168 4 1
smallest 120/155 102 86 119/155 24 21 71/155 5 4
syllables 19/109 96 117 14/109 39 54 11/109 3 2

Fig. 5. INTROCLASS: Baseline results of running GenProg v2.2, TrpAutoRepair, and AE v3.0 on the 845 white-box-based
defects, and 778 white-box-based defects of the INTROCLASS benchmark. For each of the repair techniques, we report
the number of defects repaired per program; the average time to repair in second (all three techniques were given
timeouts); and the number of fitness evaluations needed to produce a repair. Complete results, including individual log
files for each defect, are available for download with the dataset.

same baseline results on the INTROCLASS dataset. For each
of the techniques, we report the number of defects repaired
per program out of the total scenarios per program, with
the parameters described in Section 6.1. Following the
importance of efficiency in real-world program repair,
we report wall-clock time to repair on average across
all scenarios repaired for a program. We also present
the average number of test suite executions (“fitness
evaluations” in the figures) in runs leading to a repair.
This measurement serves as a compute- and scenario-
independent measure of efficiency, which is typically
dominated by test suite execution time.

There are many other interesting measurements that
we could report, such as monetary cost on public cloud
compute resources (which we omit because it serves as a
proxy for compute time), patch size, patch complexity or
readability, etc. We choose these baselines based on their
ubiquity in previous studies of repair success and their
relationship to the real-world use case of automatic repair.
However, we believe there is much work to be done in
defining new and more comprehensive measurements of
repair efficiency and quality, in particular. Because such
patches will likely be maintained and thus must be under-
stood by human developers, good quality measurements
are an important area of current and future research.

An in-depth discussion of these results is outside the
scope of this article; our goal is to provide baselines
and illustrate the potential use of the benchmarks. How-
ever, a few observations are worth discussing as part
of that illustration. As expected, TrpAutoRepair and AE
are generally faster than GenProg. On MANYBUGS, the

three techniques repair roughly the same defects, with
only minor variation (for example, with respect to which
php defects are repaired). Even though the techniques
vary in several crucial details — determinism, how test
cases are used, whether edits can be combined — their
common operators may control which defects they are
broadly able to tackle. GenProg succeeds more often than
TrpAutoRepair and AE on INTROCLASS, suggesting that
multi-edit repairs may be particularly important on these
smaller programs. On the other hand, AE (and, to a much
lesser extent, TrpAutoRepair) is much faster: it repairs
only half as many defects, but does so in roughly one-
tenth the time. The two search approaches — deterministic
vs. stochastic — may thus represent different tradeoffs in
the design space.

We provide with the downloadable dataset complete
results, including individual log files for each defect,
which can be used to reconstruct the produced patches. We
encourage other researchers to use these results in support
of the generation of new metrics.

7 RELATED WORK

Automated Program Repair. The subfield of automated
program repair is concerned with automatically bringing
an implementation more in line with its specification, typi-
cally by producing a patch that addresses a defect. Since
2009, interest in this subfield has grown substantially, and
currently there are at least twenty projects involving some
form of program repair (e.g., AE [75], AFix [44], ARC [14],
Arcuri and Yao [9], ARMOR [20], and AutoFix-E [73],
[61], Axis [54], BugFix [41], CASC [78], ClearView [63],
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Coker and Hafiz [22], Debroy and Wong [25], Demsky
and Rinard [26], FINCH [59], GenProg [49], Gopinath et
al. [36], Jolt [19], Juzi [31], MintHint [46] PACHIKA [23],
PAR [47], SemFix [58], Sidiroglou and Keromytis [69],
TrpAutoRepair [66], etc.). While there are multiple ways
to categorize program repair approaches, one of the most
salient distinctions is between what we call generate-and-
validate techniques (which heuristically produce multiple
candidate repairs for a given bug and then validate each
candidate for acceptability) and correct-by-construction
techniques (in which the particular problem formulation
or constraints employed lead to repairs that are provably
correct in a mathematical sense). We also distinguish
between general or generic repair approaches (which
target arbitrary software engineering defects) and defect-
specific or targeted repair approaches (which focus on
one particular class of bugs). While many correct-by-
construction or defect-specific techniques employ implicit
specifications (e.g., AFix addresses single-variable atomic-
ity violations, which are assumed to be undesired; Coker
and Hafiz fix integer bugs, such as overflow, which are
also assumed to be undesired) the majority of current
repair approaches target general defects and thus require
a specification of desired behavior as well as evidence
of the bug. This specification typically takes the form of
formal specifications or annotations (as in AutoFix-E), test
cases (as in GenProg) or various hybrids (as in SemFix,
where annotations are derived from test cases). Several
of the more formal repair approaches, particularly those
that are correct-by-construction, share commonalities with
and are informed by advances in program synthesis,
such as component-based [42] and test-driven program
synthesis [62]. Such approaches, particularly those that
rely on input-output examples or test traces, may also
benefit from a standard set of programs with test cases
(particularly those that include feature additions). Despite
the common bond of operating on off-the-shelf programs
with test cases, very few papers in this area compare
directly against other techniques, with a few notable
exceptions [47], [58], [66]. A few techniques are designed
as interactive or developer assistance tools (e.g., Jolt,
MintHint, and BugFix), though the underlying principles
are consistent with the others.

Novel automated program repair approaches serve as
the key client or target application for this article and
its benchmark suites. The explosion of program repair
approaches, most of which address general defects and
can make use of test cases, suggests that this effort is well-
timed. This suggests at a high level that our proposed
benchmarks may be sufficiently broadly applicable to
unify some subset of evaluation of new techniques moving
forward. We discuss potential benchmark applicability to
the evaluations of these previous techniques in Section 8.

We believe the subfield is mature enough now that new
approaches can profitably compare themselves against
others in the field, rather than inventing entirely new (and
thus incomparable) specialized defect scenarios. While
automated program repair shows great promise, it is

far from being accepted commercially: many potential
improvements remain to be made. In that regard, this
article and benchmark set are a response to the adage,
“you cannot improve what you cannot measure,” in the
research domain of program repair.
Software engineering benchmarks. Sim et al. issued a
call to arms to the software engineering community by
presenting case studies of research communities for which
a common benchmarking methodology served to build
consensus and drive research forward. They argued that
“The technical progress and increased cohesiveness in the
community have been viewed as positive side-effects of
benchmarking. Instead, [they] argue that benchmarking
should be used to achieve these positive effects” [70]. We
follow this reasoning in presenting the MANYBUGS and
INTROCLASS datasets, and hope that doing so will have
positive effects on research in automatic bug repair.

Computer science research in general and software
engineering in particular have produced several datasets
that are well-suited to the study and comparison of
particular problem areas. The first set, including SPEC,
ParSec, and DaCapo, were designed for performance
benchmarking and do not contain the intentional semantic
defects required for the automated repair problem. The
SPEC benchmarks aim to “produce, establish, maintain
and endorse a standardized set” of performance bench-
marks for computing [72]. The ParSec suites serve sim-
ilar purposes, focusing specifically on multi-threaded
programs and chip multiprocessors [10]. The DaCapo
suite supports performance evaluation of compilation
and dynamic analyses like garbage collection for Java
programs, designed specifically to address failings in the
SPEC suite with respect to Java [13].

Other researchers have developed benchmark method-
ologies and suites to evaluate bug finding techniques;
these are closer in spirit to the MANYBUGS and INTRO-
CLASS suites because they by definition consist of pro-
grams with defects. These datasets have each proved
useful, but none of them addresses all of the concerns
that motivated our benchmarks.

Bradbury et al. constructed a suite to evaluate tech-
niques that test or analyze concurrency programs; their
argument is similar to the one we present here, namely,
that comparison between techniques requires consensus
on suitable objects of study. While our datasets focus on
deterministic bugs, Bradbury et al.’s methodology serves
as a useful starting point for corresponding evaluations of
nondeterministic defects.

BugBench proposed a suite of programs and defects for
use in evaluating bug finding techniques [55]. As we do,
they characterize the space of research in automated bug
finding and use their conclusions to guide the selection of
bugs to include in the suite. Their use case (bug detection)
is close to but not identical to our own (bug repair). We
focus on the origin of the specifications of both correct
and incorrect behavior to ensure that the MANYBUGS
benchmark is indicative of real-world defects; the test
suites in BugBench are constructed largely by hand by
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the authors, which is compatible with their evaluation
goals, but not with all of ours. The iBugs suite and
methodology [24] is close in spirit to MANYBUGS. The
authors propose to construct datasets to evaluate bug
finding and localization techniques by mining repositories
for key words that indicate revisions at which a bug is
repaired. By contrast, we look specifically for revisions
at which observed dynamic behavior on the test suite
(serving as the specification of desired behavior) changes.
In their case, this means that the iBugs scenarios do not
always contain test cases for a defect. By construction, our
scenarios always do. We argue that a witness test case
and a partial specification (e.g., positive test cases) are
required for bug scenarios that are suitable for evaluating
most existing automatic repair techniques. Defects4J [45]
follows a similar methodology, again on Java programs,
intended for evaluation of testing techniques.

Perhaps the most common set of programs with defects
is from the SIR or Siemens suite [39], [27]. The Siemens
suite does provide programs with test suites and faults.
However, as with the other existing suites, it was designed
with a distinct purpose: to support controlled testing and
evaluation of software testing techniques. Thus, the test
suites are all constructed, and most of the faults are seeded.

It is possible to evaluate repair methods using many
of these suites, and likely on subsets of all of them.
However, they each lack support for one or more key
aspects of common comparative evaluations. Although
MANYBUGS and INTROCLASS are certainly not complete
nor perfect for any possible evaluation, we constructed
them specifically with the needs of the community in
mind. Reproducibility is a core concern, and we present
a methodology for developing benchmarks, which can
support extensions as new programs and techniques arise
with new complications.

An initial version of the MANYBUGS benchmark suite
was described in previous work [49]. That publication
reported on a large-scale systematic evaluation of one
specific repair method, and it introduced a set of 105 bugs
to facilitate that evaluation. This article focuses on the
benchmarks and associated methodology specifically; it
extends the original MANYBUGS dataset significantly, adds
the INTROCLASS dataset, improves several scenarios to
catch degenerate behavior, categorizes all of the bugs, and
formalizes the methodology.

Many software engineering benchmarks involve the use
of seeded defects. We have previous experience applying
GenProg to a subset of the Siemens benchmark suite [68,
Tab. 1] as well as to seeded defects [68, Sec. 5] following
an established defect distribution [34, p. 5] and fault
taxonomy (e.g., “missing conditional clause” or “extra
statement”). In both cases, GenProg behaved similarly on
seeded defects and on real-world defects. There exists both
direct and indirect evidence that seeded defects can be as
useful as real defects in some settings. For example, some
seeded defects are as difficult to locate as real defects [48].
Just et al. found both that there exists a correlation between
mutant detection and real fault detection by test suites,

and that mutation strategies and operators could be im-
proved [45]. Seeded defects and mutations are also studied
in the mutation testing community [43]; see Weimer et
al. [75, Sec. VI] for a discussion of the duality between
mutation testing and program repair. Fault seeding might
therefore serve as a suitable mechanism for generating
defect scenarios of intermediate complexity, between the
small, student-written programs of INTROCLASS and the
larger legacy C programs of MANYBUGS. However, there
is currently no direct evidence that seeded defects are
suitable for evaluating automated program repair.

8 BENCHMARK GENERALITY
No benchmark set is perfect. Consensus benchmarks
enable large-scale experiments, replication of results, and
direct comparison between techniques. However, as case
studies, they enable limited control, which reduces their
generalizability. We mitigate this threat by providing
the INTROCLASS dataset, which is designed to allow
controlled experimentation. Moreover, performance on a
benchmark set typically does not produce results that are
amenable to the construction of explanatory theories [70].
In general, having a benchmark may cause researchers to
over-optimize their techniques for the benchmark, thus
reducing generalizability of the techniques. Further, the
relative ease of using a benchmark may unintentionally
reduce evaluations that focus on important but harder-
to-evaluate measures. For example, in the field of fault
localization, researchers optimized for finding localizing
faults without, for a long time, considering if perfect fault
location information would be of use to developers [60].
This concern is particularly important for automated
program repair, because, as discussed in Section 3.1, test
cases are flawed as partial correctness specifications. We
hope researchers who use these benchmarks will perform
multiple types of qualitative analysis and present multiple
sources of evidence to support their claims, and that we
will continue as a field to develop better ways to measure
repair quality overall. Comparative empirical evaluations
are important to high-quality empirical science, but we do
not believe they are the only source of important evidence
to support claims about automatic program repair.

There exist other open-source C programs that could
be included in the MANYBUGS set, as well as additional
defects farther back in the history of some of the pro-
grams that, given additional time and resources, could
be identified. Our benchmarks may not be as general, nor
as indicative of real-world defects, as we claim. Because
we do not know the true distribution of bugs in legacy
programs, it is difficult to assess the degree to which
results on these defects, however systematically identified,
can be generalized to the true population of defects in
open-source C programs. Our requirement that test suites
be modularizable, deterministic, and scriptable likely
limits the types of programs that can be included. We
mitigate the threat to generalizability and scientific utility
by including a broad set of program types and sizes, by cat-
egorizing the defects, and by formalizing the methodology
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by which we constructed both INTROCLASS and MANY-
BUGS. We hope this will allow principled development
of the datasets to follow advances in compute resources
and software. The categorization of defects will allow
researchers to identify the subsets of defects on which
they evaluate and on which their techniques succeed. We
plan to incorporate additional labeling schemes when they
become available and to either repair or flag problematic
scenarios when reported by users.

As software systems continue to grow and as pro-
gramming and educational paradigms shift, the defects
contained in the datasets may become less indicative of
those that appear in the wild (as with MANYBUGS), or
the types of mistakes that novice programmers make
(as with INTROCLASS). By following the examples set by
SPEC [72], SIR [27], and others, these benchmarks can be
maintained and continually improved, both by the authors
and the community of researchers in automated repair. We
also constructed a virtual machine image that emulates
a current operating system, with support for emulating
the original virtual machine. This shows how empirical
experiments and testbeds can evolve with technology
while still providing backwards compatibility.

It is possible that the scenarios were tailored too nar-
rowly to our own use cases as researchers who study
automatic repair. We mitigated this threat by using them to
evaluate three different techniques using several success
metrics, and by providing two quite different datasets.
Our collaboration includes both authors of the tool that
initiated our benchmarking effort (GenProg) and authors
who have used and evaluated that tool independently
with very different experimental purposes. Further, Trp-
AutoRepair [66] was developed by authors not involved
in the benchmarking project. They evaluated on a subset
of an earlier version of the defects and used another
subset in a focused study of fault localization for program
repair [67]. Our combined and diverse experience with
the research problems presented by automatic program
repair research helps to mitigate the risks of single-project
myopia in experimental design. Similarly, the fact that
other researchers have already adapted previous and
impoverished versions of the scenarios provides evidence
of general utility.

Despite our best efforts, it is possible that the scenarios
will not prove suitable for evaluating a completely novel
program repair techniques in the future, limiting their
utility. To help assess this risk, we examined the program
repair papers cited in this article (attempting to be exhaus-
tive, although the field is moving quickly and this list is
simply our best effort). More than half of the papers are
specialized to C programs or are language independent;
and all required test cases or workloads at some stage.
Based on these criteria, MANYBUGS or INTROCLASS or
both (depending largely on scalability, which we could
not always judge) could have been used to evaluate
TrpAutoRepair [66]; SemFix [58]; Debroy and Wong [25];
He and Gupta [38], whose technique requires test suites
with high structural coverage and targets a subset of C,

suggesting INTROCLASS could be suitable; Coker and
Hafiz [22], who used historical human repairs (which we
provide) in their evaluation; BugFix [41]; MintHint [46];
and CASC [78]. Similarly Jolt [19] and ClearView [63]
are language independent, address defect types that are
included in either or both of the defect sets, and require
indicative or runtime workloads.

The remaining papers focus on specific defect classes, or
use cases that are not well represented in our datasets [26],
[69], or involve non-C languages. The most common such
language was Java (PAR [47], Juzi [31], Gopinath et al. [36],
Axis [54], AFix [44], and FINCH [59]). A diverse set of
other languages round out the remainder of the work we
surveyed: database selection statements [35], Eiffel [73],
[61], Javascript [20], and a demonstration language [7].

The vast majority of the reported techniques, regardless
of language, require test cases, and well over half target
C. Note that our benchmark construction methodologies
are not language-specific. This may allow cross-language
technique comparisons for certain types of empirical
claims, such as the proportion of a historic set of open-
source defects a technique can address [49]. Defects4J [45],
for example, is constructed via a process similar to the one
we use to produce MANYBUGS. Defects might be sliced
by the amount or type of code that must be changed to
address them, enabling the identification of a “core” set of
defect types common to, e.g., imperative languages, fur-
ther enabling cross-language defect and repair technique
comparisons. However, cross-language comparisons are
likely to remain limited: Is it meaningful to compare
a Java-specific technique to one that targets C pointer
errors? Ultimately, we expect that different languages will
benefit from language-specific benchmark construction
methodologies. See, for example, the DaCapo suite, which
addressed methodological problems with SPEC’s direct
translation of benchmark construction methodologies for
C or Fortran to Java [13]. Although our defect sets certainly
cannot apply to all program repair research, the trends
we observe in the current state of the field suggests that
the general use case we adopted for MANYBUGS and
INTROCLASS covers a broad swath of the current research
activity in the space of program repair.

We encountered many unanticipated challenges to
constructing robust defect scenarios while preparing
MANYBUGS and INTROCLASS for public release, and it is
unlikely that we found every inconsistency. In particular,
MANYBUGS test suites were adapted from those provided
by the developers of the subject programs, which may
mask degenerate behavior in ways that we did not detect.
We mitigated this threat by conducting numerous external
checks for possibly degenerate behavior, through multiple
sanity checks on each scenario and each potential source
of nondeterministic behavior, and we noted other sources
of known nondeterminism.

We address other unforeseen sources of nondetermin-
ism, unexpected behavior, or otherwise incorrect analysis
through a public release of our datasets and log files for
the experiments described in this article. We encourage
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other researchers to contact the authors with discrepancies
they discover or suggestions for improvement, and we
will endeavor to keep them and the results as up to
date as possible in the face of new information. Finally,
we assigned version numbers to each benchmark and
associated virtual machines, which we will update as we
make changes to the underlying artifacts.

9 CONTRIBUTIONS

Research fields rarely begin with standardized methods
or evaluation benchmarks. This absence can, at times,
empower both creativity and productivity of research.
However, as we argued earlier, common benchmarks
become important as a field matures to enable researchers
to properly reproduce earlier results, generalize, and to
compare, contrast, and otherwise evaluate new methods
as they come along. Historically, in computer science, the
creation of standard benchmarks has led to principled
evaluations and significant progress in associated fields,
e.g., [72], [10], [13].

To that end, we developed two collections of defect
scenarios — MANYBUGS and INTROCLASS — consisting
of 1,183 defects in 15 C programs. These benchmarks are
diverse and allow for comparative evaluation of different
types of automatic repair algorithms and experimental
questions. Each program includes multiple defects, test
suites, and human-written fixes. We illustrated the use of
the benchmarks with three repair techniques, GenProg,
TrpAutoRepair, and AE to provide baseline data that can
be used in future studies. One of our goals in creating
these benchmarks was to enable a broad set of use cases
for automatic program repair researchers. We hope that the
benchmarks will be useful, even for methods that don’t
require all of the included components. For example, a
technique might not explicitly require a set of initially
passing test cases, or an evaluation might not compare
to the human-provided patches. We devoted a significant
amount of effort to enhance usability and experimental re-
producibility, with the goal of increasing the benchmarks’
longterm contribution to the research community.

The scenarios, data (including baseline output and
categorization information) and virtual machine images
are available at http://repairbenchmarks.cs.umass.edu/.
The web site provides detailed README files explaining
the structure of the package, scenarios, results, and virtual
machines information (including AMI numbers for the
EC2 images). Errata and feedback on these resources
should be sent to the authors.
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Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In Object-Oriented
Programming, Systems, Languages, and Applications, pages 169–190,
2006.

[14] Jeremy S. Bradbury and Kevin Jalbert. Automatic repair of
concurrency bugs. In International Symposium on Search Based
Software Engineering — Fast Abstracts, pages 1–2, Sept. 2010.

[15] Jeremy S. Bradbury, Itai Segall, Eitan Farchi, Kevin Jalbert, and
David Kelk. Using combinatorial benchmark construction to
improve the assessment of concurrency bug detection tools. In
Workshop on Parallel and Distributed Systems: Testing, Analysis, and
Debugging, PADTAD 2012, pages 25–35, 2012.

[16] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer
Katzenellenbogen. Reversible debugging software. Technical report,
University of Cambridge, Judge Business School, 2013.

[17] Yuriy Brun, Earl Barr, Ming Xiao, Claire Le Goues, and Prem
Devanbu. Evolution vs. intelligent design in program patching.
Technical Report https://escholarship.org/uc/item/3z8926ks, UC
Davis: College of Engineering, 2013.

[18] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unas-
sisted and automatic generation of high-coverage tests for complex
systems programs. In Operating Systems Design and Implementation,
pages 209–224, San Diego, CA, USA, 2008.

[19] Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C.
Rinard. Detecting and escaping infinite loops with Jolt. In European
Conference on Object Oriented Programming, pages 609–633, 2011.

[20] Antonio Carzaniga, Alessandra Gorla, Andrea Mattavelli, Nicolò
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